Fix inconsistent EOL

This commit is contained in:
2025-01-08 22:27:37 +01:00
parent 57671ac79d
commit 1f7141c517
184 changed files with 13686 additions and 13685 deletions

View File

@@ -1,13 +1,13 @@
include ../Common.mk
ARTIFACT = psxfileconv
.PHONY: $(WINDOWS_ARTIFACT) $(UNIX_ARTIFACT)
$(WINDOWS_ARTIFACT):
$(call cargo_windows_default)
$(UNIX_ARTIFACT):
$(call cargo_unix_default)
all-windows: $(WINDOWS_ARTIFACT)
include ../Common.mk
ARTIFACT = psxfileconv
.PHONY: $(WINDOWS_ARTIFACT) $(UNIX_ARTIFACT)
$(WINDOWS_ARTIFACT):
$(call cargo_windows_default)
$(UNIX_ARTIFACT):
$(call cargo_unix_default)
all-windows: $(WINDOWS_ARTIFACT)
all: $(UNIX_ARTIFACT)

View File

@@ -1,2 +1,2 @@
pub mod xa;
pub mod xa;
pub mod vag;

View File

@@ -1,169 +1,169 @@
pub mod types;
use clap::Args;
use std::{io::Write, str::FromStr};
use tool_helper::{Error, Input};
use types::{LPC, MonoADPCMIterator, VAGADPCM, VAGHeader};
#[derive(Args)]
pub struct Arguments {
#[clap(long, help="Specify the file name to be embedded in the header", default_value = "File name without extensions up to 16 characters")]
name: Option<String>,
#[clap(short='l', help="Set a loop at the specified time", value_name = "<min>:<sec>.<msec>[-<min>:<sec>.<msec>]", value_parser = clap::value_parser!(Loop))]
r#loop: Option<Loop>
}
#[derive(Clone)]
pub struct Loop {
start_time_sec: f64,
end_time_sec: Option<f64>,
}
impl Loop {
const END_DELIMITER: char = '-';
const MIN_DELIMITER: char = ':';
fn parse(str: Option<&str>) -> Result<Option<f64>, String> {
fn print_sec_conversion_error(str: &str, error: &dyn core::fmt::Display) -> String {
format!("Converting specified seconds \"{}\" failed with: {}", str, error)
}
if let Some(str) = str {
let time = {
if let Some(min_delim_idx) = str.find(Self::MIN_DELIMITER) {
let (min, sec) = str.split_at(min_delim_idx);
let min = min.parse::<u64>().map_err(|e| format!("Converting specified minutes \"{}\" failed with: {}", min, e))?;
let sec = sec.trim_start_matches(Self::MIN_DELIMITER).parse::<f64>().map_err(|e| print_sec_conversion_error(sec, &e))?;
(min*60) as f64 + sec
}
else {
str.parse::<f64>().map_err(|e| print_sec_conversion_error(str, &e))?
}
};
Ok(Some(time))
}
else {
Ok(None)
}
}
}
impl FromStr for Loop {
type Err = String;
fn from_str(arg: &str) -> Result<Self, Self::Err> {
let mut args = arg.split(Self::END_DELIMITER);
let start_time_sec = Self::parse(args.next()).map_err(|e| format!("{}", e))?.ok_or_else(|| format!("A start time is required for a loop"))?;
let end_time_sec = Self::parse(args.next()).map_err(|e| format!("{}", e))?;
Ok(Loop{start_time_sec, end_time_sec})
}
}
struct LoopInfo {
start_sample: usize,
end_sample: usize,
}
impl LoopInfo {
fn create(r#loop: &Loop, sample_frequency: u32, vagadpcm_count: usize) -> LoopInfo {
fn calculate_sample(time_sec: f64, vag_frequency: f64) -> usize {
(time_sec*vag_frequency) as usize
}
let sample_frequency = sample_frequency as f64 / VAGADPCM::ADPCM_SAMPLES_PER_VAGADPCM as f64;
let start_sample = calculate_sample(r#loop.start_time_sec, sample_frequency);
let end_sample = {
if let Some(end_time_sec) = r#loop.end_time_sec {
let end_sample = calculate_sample(end_time_sec, sample_frequency);
if end_sample > vagadpcm_count {vagadpcm_count} else {end_sample}
}
else {
vagadpcm_count
}
};
LoopInfo{start_sample, end_sample}
}
fn is_loop_start_reached(&self, sample: usize) -> bool {
self.start_sample == sample
}
fn is_loop_end_reached(&self, sample: usize) -> bool {
self.end_sample == sample
}
}
pub fn convert(args: Arguments, output_file_path: &Option<std::path::PathBuf>, input: Input, output: &mut dyn Write) -> Result<(), Error> {
let mut wav_file = hound::WavReader::new(input)?;
let wav_header = wav_file.spec();
validate(&wav_header)?;
let vagadpcm_samples = VAGHeader::expected_vagadpcm_samples(wav_file.len()) + 1;
let sample_info = args.r#loop.map(|v| LoopInfo::create(&v, wav_header.sample_rate, vagadpcm_samples as usize));
let mut lpc = LPC::empty();
tool_helper::raw::write_raw(output, &VAGHeader::create(vagadpcm_samples, wav_header.sample_rate, &get_name_for_file_header(args.name, output_file_path))?)?;
for (sample_id, adpcm_sample) in MonoADPCMIterator::create(wav_file.samples::<i16>()).enumerate() {
let (mut vagadpcm, new_lpc) = VAGADPCM::create(adpcm_sample?, lpc);
if let Some(sample_info) = &sample_info {
if sample_info.is_loop_start_reached(sample_id) {
vagadpcm = vagadpcm.set_loop_start();
}
if sample_info.is_loop_end_reached(sample_id + 1) {
vagadpcm = vagadpcm.set_loop_end_repeat();
}
}
tool_helper::raw::write_raw(output, &vagadpcm)?;
lpc = new_lpc;
}
if sample_info.is_none() {
tool_helper::raw::write_raw(output, &VAGADPCM::end())?;
}
Ok(())
}
fn validate(wav_header: &hound::WavSpec) -> Result<(), Error> {
if wav_header.sample_format != hound::SampleFormat::Int {
return Err(Error::from_str("VAG: Only integer samples are supported as input."));
}
if wav_header.bits_per_sample != 16 {
return Err(Error::from_str("VAG: Only 16bits samples are currently supported as input."));
}
if wav_header.channels != 1 {
return Err(Error::from_str("VAG: Only mono samples are currently supported"));
}
Ok(())
}
fn get_name_for_file_header(name: Option<String>, output_file_path: &Option<std::path::PathBuf>) -> String {
if let Some(name) = name {
return name;
}
if let Some(output_file_path) = output_file_path {
if let Some(file_name) = output_file_path.file_name() {
let mut string = file_name.to_string_lossy().to_string();
if let Some(idx) = string.rfind('.') {
string.replace_range(idx.., "");
}
return string;
}
}
return "<out>".to_owned();
pub mod types;
use clap::Args;
use std::{io::Write, str::FromStr};
use tool_helper::{Error, Input};
use types::{LPC, MonoADPCMIterator, VAGADPCM, VAGHeader};
#[derive(Args)]
pub struct Arguments {
#[clap(long, help="Specify the file name to be embedded in the header", default_value = "File name without extensions up to 16 characters")]
name: Option<String>,
#[clap(short='l', help="Set a loop at the specified time", value_name = "<min>:<sec>.<msec>[-<min>:<sec>.<msec>]", value_parser = clap::value_parser!(Loop))]
r#loop: Option<Loop>
}
#[derive(Clone)]
pub struct Loop {
start_time_sec: f64,
end_time_sec: Option<f64>,
}
impl Loop {
const END_DELIMITER: char = '-';
const MIN_DELIMITER: char = ':';
fn parse(str: Option<&str>) -> Result<Option<f64>, String> {
fn print_sec_conversion_error(str: &str, error: &dyn core::fmt::Display) -> String {
format!("Converting specified seconds \"{}\" failed with: {}", str, error)
}
if let Some(str) = str {
let time = {
if let Some(min_delim_idx) = str.find(Self::MIN_DELIMITER) {
let (min, sec) = str.split_at(min_delim_idx);
let min = min.parse::<u64>().map_err(|e| format!("Converting specified minutes \"{}\" failed with: {}", min, e))?;
let sec = sec.trim_start_matches(Self::MIN_DELIMITER).parse::<f64>().map_err(|e| print_sec_conversion_error(sec, &e))?;
(min*60) as f64 + sec
}
else {
str.parse::<f64>().map_err(|e| print_sec_conversion_error(str, &e))?
}
};
Ok(Some(time))
}
else {
Ok(None)
}
}
}
impl FromStr for Loop {
type Err = String;
fn from_str(arg: &str) -> Result<Self, Self::Err> {
let mut args = arg.split(Self::END_DELIMITER);
let start_time_sec = Self::parse(args.next()).map_err(|e| format!("{}", e))?.ok_or_else(|| format!("A start time is required for a loop"))?;
let end_time_sec = Self::parse(args.next()).map_err(|e| format!("{}", e))?;
Ok(Loop{start_time_sec, end_time_sec})
}
}
struct LoopInfo {
start_sample: usize,
end_sample: usize,
}
impl LoopInfo {
fn create(r#loop: &Loop, sample_frequency: u32, vagadpcm_count: usize) -> LoopInfo {
fn calculate_sample(time_sec: f64, vag_frequency: f64) -> usize {
(time_sec*vag_frequency) as usize
}
let sample_frequency = sample_frequency as f64 / VAGADPCM::ADPCM_SAMPLES_PER_VAGADPCM as f64;
let start_sample = calculate_sample(r#loop.start_time_sec, sample_frequency);
let end_sample = {
if let Some(end_time_sec) = r#loop.end_time_sec {
let end_sample = calculate_sample(end_time_sec, sample_frequency);
if end_sample > vagadpcm_count {vagadpcm_count} else {end_sample}
}
else {
vagadpcm_count
}
};
LoopInfo{start_sample, end_sample}
}
fn is_loop_start_reached(&self, sample: usize) -> bool {
self.start_sample == sample
}
fn is_loop_end_reached(&self, sample: usize) -> bool {
self.end_sample == sample
}
}
pub fn convert(args: Arguments, output_file_path: &Option<std::path::PathBuf>, input: Input, output: &mut dyn Write) -> Result<(), Error> {
let mut wav_file = hound::WavReader::new(input)?;
let wav_header = wav_file.spec();
validate(&wav_header)?;
let vagadpcm_samples = VAGHeader::expected_vagadpcm_samples(wav_file.len()) + 1;
let sample_info = args.r#loop.map(|v| LoopInfo::create(&v, wav_header.sample_rate, vagadpcm_samples as usize));
let mut lpc = LPC::empty();
tool_helper::raw::write_raw(output, &VAGHeader::create(vagadpcm_samples, wav_header.sample_rate, &get_name_for_file_header(args.name, output_file_path))?)?;
for (sample_id, adpcm_sample) in MonoADPCMIterator::create(wav_file.samples::<i16>()).enumerate() {
let (mut vagadpcm, new_lpc) = VAGADPCM::create(adpcm_sample?, lpc);
if let Some(sample_info) = &sample_info {
if sample_info.is_loop_start_reached(sample_id) {
vagadpcm = vagadpcm.set_loop_start();
}
if sample_info.is_loop_end_reached(sample_id + 1) {
vagadpcm = vagadpcm.set_loop_end_repeat();
}
}
tool_helper::raw::write_raw(output, &vagadpcm)?;
lpc = new_lpc;
}
if sample_info.is_none() {
tool_helper::raw::write_raw(output, &VAGADPCM::end())?;
}
Ok(())
}
fn validate(wav_header: &hound::WavSpec) -> Result<(), Error> {
if wav_header.sample_format != hound::SampleFormat::Int {
return Err(Error::from_str("VAG: Only integer samples are supported as input."));
}
if wav_header.bits_per_sample != 16 {
return Err(Error::from_str("VAG: Only 16bits samples are currently supported as input."));
}
if wav_header.channels != 1 {
return Err(Error::from_str("VAG: Only mono samples are currently supported"));
}
Ok(())
}
fn get_name_for_file_header(name: Option<String>, output_file_path: &Option<std::path::PathBuf>) -> String {
if let Some(name) = name {
return name;
}
if let Some(output_file_path) = output_file_path {
if let Some(file_name) = output_file_path.file_name() {
let mut string = file_name.to_string_lossy().to_string();
if let Some(idx) = string.rfind('.') {
string.replace_range(idx.., "");
}
return string;
}
}
return "<out>".to_owned();
}

View File

@@ -1,226 +1,226 @@
use bitflags::bitflags;
use tool_helper::{raw::RawConversion, Error};
#[repr(packed)]
#[derive(Clone)]
pub struct VAGHeader {
_id: [u8; 4],
version: u32,
_reserved: u32,
data_size: u32,
sampling_frequency: u32,
_reserved2: [u8; 12],
_name: [u8; 16]
}
impl VAGHeader {
const SIZE: usize = std::mem::size_of::<VAGHeader>();
const ID: [u8; 4] = ['V' as u8, 'A' as u8, 'G' as u8, 'p' as u8];
const VERSION: u32 = 0x02;
const RESERVED: u32 = 0;
const RESERVED2: [u8; 12] = [0; 12];
pub fn expected_vagadpcm_samples(adpcm_samples: u32) -> u32 {
((adpcm_samples as usize + (VAGADPCM::ADPCM_SAMPLES_PER_VAGADPCM - 1))/VAGADPCM::ADPCM_SAMPLES_PER_VAGADPCM) as u32
}
pub fn create(vagadpcm_samples: u32, sampling_frequency: u32, name: &str) -> Result<VAGHeader, Error> {
let data_size = vagadpcm_samples*VAGADPCM::SIZE as u32;
let name = {
if !name.is_ascii() {
return Err(Error::from_text(format!("File name {} is not ascii", name)));
}
let name_length = if name.len() > 16 {16} else {name.len()};
let mut new_name = [0u8; 16];
new_name[..name_length].copy_from_slice(&name.as_bytes()[..name_length]);
new_name
};
Ok(VAGHeader{
_id: VAGHeader::ID,
version: VAGHeader::VERSION,
_reserved: VAGHeader::RESERVED,
data_size: data_size,
sampling_frequency: sampling_frequency,
_reserved2: VAGHeader::RESERVED2,
_name: name
})
}
}
impl RawConversion<{VAGHeader::SIZE}> for VAGHeader {
fn convert_to_raw(&self) -> [u8; VAGHeader::SIZE] {
unsafe {
let mut vag_header = self.clone();
vag_header.version = self.version.to_be();
vag_header.data_size = self.data_size.to_be();
vag_header.sampling_frequency = self.sampling_frequency.to_be();
let data: [u8; VAGHeader::SIZE] = std::mem::transmute(vag_header);
data
}
}
}
bitflags! {
struct VAGFlagBits : u8 {
const LoopEnd = (1 << 0);
const Repeat = (1 << 1);
const LoopStart = (1 << 2);
}
}
pub struct VAGADPCM {
data: [u32; 4]
}
impl VAGADPCM {
const SIZE: usize = std::mem::size_of::<VAGADPCM>();
pub(super) const ADPCM_SAMPLES_PER_VAGADPCM:usize = 28;
pub fn empty() -> VAGADPCM {
VAGADPCM{data: [0; 4]}
}
fn create_for_filter_shift(filter: u32, shift: u32) -> VAGADPCM {
VAGADPCM{data: [(12 - shift) | filter << 4, 0, 0, 0]}
}
pub fn end() -> VAGADPCM {
VAGADPCM::empty().set_loop_self()
}
pub fn create(samples: ADPCMSampleForVag, lpc_tap: LPC) -> (VAGADPCM, LPC) {
fn cap_value(value: i32, min: i32, max: i32) -> i32 {
if value < min {
min
}
else if value > max {
max
}
else {
value
}
}
let mut best_frame = VAGADPCM::empty();
let mut best_tap = LPC::empty();
let mut best_error = std::u64::MAX as u64;
for (filter_id, filter) in LPC::FILTERS.iter().enumerate() {
for shift in 0..=12 {
let mut this_frame = VAGADPCM::create_for_filter_shift(filter_id as u32, shift);
let this_tap = lpc_tap.clone();
let mut this_error = 0;
for (sample_id, sample) in samples.iter().enumerate() {
let x = *sample as i32;
let p = (this_tap.first*filter.first + this_tap.second*filter.second + 32) >> 6;
let r = x - p;
let q = cap_value((r + (((1 << shift) - (r < 0) as i32) >> 1)) >> shift, -8, 7);
let y = cap_value(p + (q << shift), std::i16::MIN as i32, std::i16::MAX as i32);
let e = y - x;
this_frame.data[(sample_id+4)/8] |= ((q&0xF) << (((sample_id + 4)%8)*4)) as u32;
this_error += (e*e) as u64;
}
if this_error < best_error {
best_tap = this_tap;
best_error = this_error;
best_frame = this_frame;
}
}
}
(best_frame, best_tap)
}
fn set_vag_flags(&mut self, flags: VAGFlagBits) {
let mut first_sample = self.data[0].to_ne_bytes();
first_sample[1] = flags.bits();
self.data[0] = u32::from_ne_bytes(first_sample);
}
pub fn set_loop_start(mut self) -> Self {
self.set_vag_flags(VAGFlagBits::LoopStart);
self
}
pub fn set_loop_end_repeat(mut self) -> Self {
self.set_vag_flags(VAGFlagBits::LoopEnd | VAGFlagBits::Repeat);
self
}
pub fn set_loop_self(mut self) -> Self {
self.set_vag_flags(VAGFlagBits::LoopStart | VAGFlagBits::LoopEnd);
self
}
}
impl RawConversion<{VAGADPCM::SIZE}> for VAGADPCM {
fn convert_to_raw(&self) -> [u8; VAGADPCM::SIZE] {
unsafe {
let data: [u8; VAGADPCM::SIZE] = std::mem::transmute_copy(&self as &VAGADPCM);
data
}
}
}
#[derive(Clone)]
pub struct LPC {
first: i32,
second: i32
}
impl LPC {
const FILTERS: [LPC; 5] = [
LPC{first: 0, second: 0},
LPC{first: 60, second: 0},
LPC{first: 115, second: -52},
LPC{first: 98, second: -55},
LPC{first: 122, second: -60}
];
pub fn empty() -> LPC {
LPC{first: 0, second: 0}
}
}
pub type ADPCMSampleForVag = [i16; VAGADPCM::ADPCM_SAMPLES_PER_VAGADPCM];
pub struct MonoADPCMIterator<I: std::iter::Iterator<Item=Result<i16, hound::Error>>> {
iter: I
}
impl<I:std::iter::Iterator<Item=Result<i16, hound::Error>>> MonoADPCMIterator<I>{
pub fn create(iter: I) -> MonoADPCMIterator<I> {
MonoADPCMIterator{iter}
}
}
impl<I:std::iter::Iterator<Item=Result<i16, hound::Error>>> std::iter::Iterator for MonoADPCMIterator<I> {
type Item = Result<[i16; VAGADPCM::ADPCM_SAMPLES_PER_VAGADPCM], Error>;
fn next(&mut self) -> Option<Self::Item> {
const STREAM_GONE_ERROR: &'static str = "Reading ADPCM sample failed";
if let Some(next_sample) = self.iter.next() {
let Ok(next_sample) = next_sample else {return Some(Err(Error::from_str(STREAM_GONE_ERROR)));};
let mut sample = [0;VAGADPCM::ADPCM_SAMPLES_PER_VAGADPCM];
sample[0] = next_sample;
for idx in 1..VAGADPCM::ADPCM_SAMPLES_PER_VAGADPCM {
let Ok(next_sample) = self.iter.next().unwrap_or(Ok(0)) else {return Some(Err(Error::from_str(STREAM_GONE_ERROR)));};
sample[idx] = next_sample;
}
return Some(Ok(sample));
}
None
}
use bitflags::bitflags;
use tool_helper::{raw::RawConversion, Error};
#[repr(packed)]
#[derive(Clone)]
pub struct VAGHeader {
_id: [u8; 4],
version: u32,
_reserved: u32,
data_size: u32,
sampling_frequency: u32,
_reserved2: [u8; 12],
_name: [u8; 16]
}
impl VAGHeader {
const SIZE: usize = std::mem::size_of::<VAGHeader>();
const ID: [u8; 4] = ['V' as u8, 'A' as u8, 'G' as u8, 'p' as u8];
const VERSION: u32 = 0x02;
const RESERVED: u32 = 0;
const RESERVED2: [u8; 12] = [0; 12];
pub fn expected_vagadpcm_samples(adpcm_samples: u32) -> u32 {
((adpcm_samples as usize + (VAGADPCM::ADPCM_SAMPLES_PER_VAGADPCM - 1))/VAGADPCM::ADPCM_SAMPLES_PER_VAGADPCM) as u32
}
pub fn create(vagadpcm_samples: u32, sampling_frequency: u32, name: &str) -> Result<VAGHeader, Error> {
let data_size = vagadpcm_samples*VAGADPCM::SIZE as u32;
let name = {
if !name.is_ascii() {
return Err(Error::from_text(format!("File name {} is not ascii", name)));
}
let name_length = if name.len() > 16 {16} else {name.len()};
let mut new_name = [0u8; 16];
new_name[..name_length].copy_from_slice(&name.as_bytes()[..name_length]);
new_name
};
Ok(VAGHeader{
_id: VAGHeader::ID,
version: VAGHeader::VERSION,
_reserved: VAGHeader::RESERVED,
data_size: data_size,
sampling_frequency: sampling_frequency,
_reserved2: VAGHeader::RESERVED2,
_name: name
})
}
}
impl RawConversion<{VAGHeader::SIZE}> for VAGHeader {
fn convert_to_raw(&self) -> [u8; VAGHeader::SIZE] {
unsafe {
let mut vag_header = self.clone();
vag_header.version = self.version.to_be();
vag_header.data_size = self.data_size.to_be();
vag_header.sampling_frequency = self.sampling_frequency.to_be();
let data: [u8; VAGHeader::SIZE] = std::mem::transmute(vag_header);
data
}
}
}
bitflags! {
struct VAGFlagBits : u8 {
const LoopEnd = (1 << 0);
const Repeat = (1 << 1);
const LoopStart = (1 << 2);
}
}
pub struct VAGADPCM {
data: [u32; 4]
}
impl VAGADPCM {
const SIZE: usize = std::mem::size_of::<VAGADPCM>();
pub(super) const ADPCM_SAMPLES_PER_VAGADPCM:usize = 28;
pub fn empty() -> VAGADPCM {
VAGADPCM{data: [0; 4]}
}
fn create_for_filter_shift(filter: u32, shift: u32) -> VAGADPCM {
VAGADPCM{data: [(12 - shift) | filter << 4, 0, 0, 0]}
}
pub fn end() -> VAGADPCM {
VAGADPCM::empty().set_loop_self()
}
pub fn create(samples: ADPCMSampleForVag, lpc_tap: LPC) -> (VAGADPCM, LPC) {
fn cap_value(value: i32, min: i32, max: i32) -> i32 {
if value < min {
min
}
else if value > max {
max
}
else {
value
}
}
let mut best_frame = VAGADPCM::empty();
let mut best_tap = LPC::empty();
let mut best_error = std::u64::MAX as u64;
for (filter_id, filter) in LPC::FILTERS.iter().enumerate() {
for shift in 0..=12 {
let mut this_frame = VAGADPCM::create_for_filter_shift(filter_id as u32, shift);
let this_tap = lpc_tap.clone();
let mut this_error = 0;
for (sample_id, sample) in samples.iter().enumerate() {
let x = *sample as i32;
let p = (this_tap.first*filter.first + this_tap.second*filter.second + 32) >> 6;
let r = x - p;
let q = cap_value((r + (((1 << shift) - (r < 0) as i32) >> 1)) >> shift, -8, 7);
let y = cap_value(p + (q << shift), std::i16::MIN as i32, std::i16::MAX as i32);
let e = y - x;
this_frame.data[(sample_id+4)/8] |= ((q&0xF) << (((sample_id + 4)%8)*4)) as u32;
this_error += (e*e) as u64;
}
if this_error < best_error {
best_tap = this_tap;
best_error = this_error;
best_frame = this_frame;
}
}
}
(best_frame, best_tap)
}
fn set_vag_flags(&mut self, flags: VAGFlagBits) {
let mut first_sample = self.data[0].to_ne_bytes();
first_sample[1] = flags.bits();
self.data[0] = u32::from_ne_bytes(first_sample);
}
pub fn set_loop_start(mut self) -> Self {
self.set_vag_flags(VAGFlagBits::LoopStart);
self
}
pub fn set_loop_end_repeat(mut self) -> Self {
self.set_vag_flags(VAGFlagBits::LoopEnd | VAGFlagBits::Repeat);
self
}
pub fn set_loop_self(mut self) -> Self {
self.set_vag_flags(VAGFlagBits::LoopStart | VAGFlagBits::LoopEnd);
self
}
}
impl RawConversion<{VAGADPCM::SIZE}> for VAGADPCM {
fn convert_to_raw(&self) -> [u8; VAGADPCM::SIZE] {
unsafe {
let data: [u8; VAGADPCM::SIZE] = std::mem::transmute_copy(&self as &VAGADPCM);
data
}
}
}
#[derive(Clone)]
pub struct LPC {
first: i32,
second: i32
}
impl LPC {
const FILTERS: [LPC; 5] = [
LPC{first: 0, second: 0},
LPC{first: 60, second: 0},
LPC{first: 115, second: -52},
LPC{first: 98, second: -55},
LPC{first: 122, second: -60}
];
pub fn empty() -> LPC {
LPC{first: 0, second: 0}
}
}
pub type ADPCMSampleForVag = [i16; VAGADPCM::ADPCM_SAMPLES_PER_VAGADPCM];
pub struct MonoADPCMIterator<I: std::iter::Iterator<Item=Result<i16, hound::Error>>> {
iter: I
}
impl<I:std::iter::Iterator<Item=Result<i16, hound::Error>>> MonoADPCMIterator<I>{
pub fn create(iter: I) -> MonoADPCMIterator<I> {
MonoADPCMIterator{iter}
}
}
impl<I:std::iter::Iterator<Item=Result<i16, hound::Error>>> std::iter::Iterator for MonoADPCMIterator<I> {
type Item = Result<[i16; VAGADPCM::ADPCM_SAMPLES_PER_VAGADPCM], Error>;
fn next(&mut self) -> Option<Self::Item> {
const STREAM_GONE_ERROR: &'static str = "Reading ADPCM sample failed";
if let Some(next_sample) = self.iter.next() {
let Ok(next_sample) = next_sample else {return Some(Err(Error::from_str(STREAM_GONE_ERROR)));};
let mut sample = [0;VAGADPCM::ADPCM_SAMPLES_PER_VAGADPCM];
sample[0] = next_sample;
for idx in 1..VAGADPCM::ADPCM_SAMPLES_PER_VAGADPCM {
let Ok(next_sample) = self.iter.next().unwrap_or(Ok(0)) else {return Some(Err(Error::from_str(STREAM_GONE_ERROR)));};
sample[idx] = next_sample;
}
return Some(Ok(sample));
}
None
}
}

View File

@@ -1,39 +1,39 @@
mod raw_audio;
mod xa_audio;
use clap::{Args, ValueEnum};
use std::io::Write;
use tool_helper::{Error, Input};
use xa_audio::{LOW_FREQUENCY, HIGH_FREQUENCY};
#[derive(Args, Clone)]
pub struct Arguments {
#[clap(short='f', long="frequency", value_enum, value_parser, default_value_t=Frequency::High)]
frequency: Frequency,
#[clap(short='b', long="bitdepth", value_enum, value_parser, default_value_t=SampleDepth::Normal)]
sample_depth: SampleDepth,
}
#[derive(Copy, Clone, ValueEnum)]
pub enum Frequency {
High,
Low,
}
#[derive(Copy, Clone, ValueEnum)]
pub enum SampleDepth {
Normal,
High
}
pub fn convert(args: Arguments, input: Input, output: &mut dyn Write) -> Result<(), Error> {
let prepared_xa_audio = raw_audio::load_as_i16_audio(input, frequency_to_value(args.frequency))?;
xa_audio::encode(prepared_xa_audio, output, &args)
}
fn frequency_to_value(requested_freq: Frequency) -> u32 {
match requested_freq {
Frequency::High => HIGH_FREQUENCY,
Frequency::Low => LOW_FREQUENCY,
}
mod raw_audio;
mod xa_audio;
use clap::{Args, ValueEnum};
use std::io::Write;
use tool_helper::{Error, Input};
use xa_audio::{LOW_FREQUENCY, HIGH_FREQUENCY};
#[derive(Args, Clone)]
pub struct Arguments {
#[clap(short='f', long="frequency", value_enum, value_parser, default_value_t=Frequency::High)]
frequency: Frequency,
#[clap(short='b', long="bitdepth", value_enum, value_parser, default_value_t=SampleDepth::Normal)]
sample_depth: SampleDepth,
}
#[derive(Copy, Clone, ValueEnum)]
pub enum Frequency {
High,
Low,
}
#[derive(Copy, Clone, ValueEnum)]
pub enum SampleDepth {
Normal,
High
}
pub fn convert(args: Arguments, input: Input, output: &mut dyn Write) -> Result<(), Error> {
let prepared_xa_audio = raw_audio::load_as_i16_audio(input, frequency_to_value(args.frequency))?;
xa_audio::encode(prepared_xa_audio, output, &args)
}
fn frequency_to_value(requested_freq: Frequency) -> u32 {
match requested_freq {
Frequency::High => HIGH_FREQUENCY,
Frequency::Low => LOW_FREQUENCY,
}
}

View File

@@ -1,35 +1,35 @@
use super::Error;
use symphonia::core::errors::Error as SymError;
use rubato::{ResampleError, ResamplerConstructionError};
fn generic_map_error(action: &str, error_str: String) -> Error {
Error::from_text(format!("symphonia error: {} during {}", error_str, action))
}
pub fn probe(error: SymError) -> Error {
generic_map_error("probing of input", error.to_string())
}
pub fn decoder(error: SymError) -> Error {
generic_map_error("finding codec", error.to_string())
}
pub fn next_packet(error: SymError) -> Error {
generic_map_error("getting next raw packet", error.to_string())
}
pub fn decode(error: SymError) -> Error {
generic_map_error("decoding of raw packet", error.to_string())
}
pub fn resampler_construction(error: ResamplerConstructionError) -> Error {
generic_map_error("creating resampler", error.to_string())
}
pub fn resample(error: ResampleError) -> Error {
generic_map_error("resampling", error.to_string())
}
pub fn find_track() -> Error {
Error::from_str("symphonia error: No audio track located")
use super::Error;
use symphonia::core::errors::Error as SymError;
use rubato::{ResampleError, ResamplerConstructionError};
fn generic_map_error(action: &str, error_str: String) -> Error {
Error::from_text(format!("symphonia error: {} during {}", error_str, action))
}
pub fn probe(error: SymError) -> Error {
generic_map_error("probing of input", error.to_string())
}
pub fn decoder(error: SymError) -> Error {
generic_map_error("finding codec", error.to_string())
}
pub fn next_packet(error: SymError) -> Error {
generic_map_error("getting next raw packet", error.to_string())
}
pub fn decode(error: SymError) -> Error {
generic_map_error("decoding of raw packet", error.to_string())
}
pub fn resampler_construction(error: ResamplerConstructionError) -> Error {
generic_map_error("creating resampler", error.to_string())
}
pub fn resample(error: ResampleError) -> Error {
generic_map_error("resampling", error.to_string())
}
pub fn find_track() -> Error {
Error::from_str("symphonia error: No audio track located")
}

View File

@@ -1,238 +1,238 @@
mod error;
use rubato::{FftFixedInOut, Resampler};
use symphonia::core::{
audio::{AudioBuffer, Layout, SampleBuffer, Signal, SignalSpec},
codecs::{Decoder, DecoderOptions, CODEC_TYPE_NULL},
errors::Error as SymError,
formats::{FormatOptions, FormatReader},
io::MediaSourceStream,
meta::MetadataOptions,
probe::Hint
};
use tool_helper::{Error, Input};
#[derive(Copy, Clone, PartialEq)]
pub enum Orality {
Stereo,
Mono,
}
pub struct CDAudioSamples {
samples: Vec::<i16>,
orality: Orality,
}
impl CDAudioSamples {
pub fn new(samples: Vec<i16>, channels: usize) -> Result<CDAudioSamples, Error> {
let orality = match channels {
0 => return Err(Error::from_str("Input file has no audio channels")),
1 => Orality::Mono,
2 => Orality::Stereo,
_ => return Err(Error::from_str("Only Mono and Stereo input are supported")),
};
Ok(CDAudioSamples{samples, orality})
}
pub fn samples(&self) -> &Vec::<i16> {
&self.samples
}
pub fn orality(&self) -> Orality {
self.orality.clone()
}
}
struct InternalAudioSamples {
planar_samples: Vec<Vec<f32>>,
frequency: u32,
}
impl InternalAudioSamples {
pub fn new(planar_samples: Vec<Vec<f32>>, frequency: u32) -> Result<InternalAudioSamples, Error> {
if planar_samples.len() < 1 || planar_samples.len() > 2{
Err(Error::from_str("Audio samples need to be either mono or stereo"))
}
else {
Ok(InternalAudioSamples{planar_samples, frequency})
}
}
pub fn into_audio_buffer(self) -> AudioBuffer<f32> {
let duration = self.sample_len() as u64;
let mut new_audio_buffer = AudioBuffer::new(duration, SignalSpec::new_with_layout(self.frequency, if self.planar_samples.len() == 1 {Layout::Mono} else {Layout::Stereo}));
new_audio_buffer.render_silence(None);
for (channel_idx, channel) in self.planar_samples.into_iter().enumerate() {
let dst_channel = new_audio_buffer.chan_mut(channel_idx);
for (sample_idx, sample) in channel.into_iter().enumerate() {
dst_channel[sample_idx] = sample;
}
}
new_audio_buffer
}
pub fn sample_len(&self) -> usize {
self.planar_samples[0].len()
}
pub fn channels(&self) -> usize {
self.planar_samples.len()
}
pub fn planar_slices(&self) -> Vec<&[f32]> {
let mut planar_slices = Vec::new();
for channel in &self.planar_samples {
planar_slices.push(channel.as_slice());
}
planar_slices
}
}
pub fn load_as_i16_audio(input: Input, target_frequency: u32) -> Result<CDAudioSamples, Error> {
let raw_audio = load_raw_audio(input)?;
let raw_audio = resample(raw_audio, target_frequency)?;
down_sample_interleave(raw_audio)
}
fn load_raw_audio(input: Input) -> Result<InternalAudioSamples, Error> {
let media_stream = MediaSourceStream::new(Box::new(load_to_ram(input)?), Default::default());
let format = symphonia::default::get_probe().format(&Hint::new(), media_stream, &FormatOptions::default(), &MetadataOptions::default()).map_err(error::probe)?.format;
let track = format.tracks().iter().find(|t| t.codec_params.codec != CODEC_TYPE_NULL).ok_or_else(error::find_track)?;
// Create a decoder for the track.
let decoder = symphonia::default::get_codecs().make(&track.codec_params, &DecoderOptions::default()).map_err(error::decoder)?;
let track_id = track.id;
decode(format, decoder, track_id)
}
fn decode(mut format: Box<dyn FormatReader>, mut decoder: Box<dyn Decoder>, track_id: u32) -> Result<InternalAudioSamples, Error> {
let mut samples = Vec::new();
let mut channel_count = 0;
let mut frequency = 0;
let mut read_buffer = None;
loop {
// Get the next packet from the media format.
let packet = match format.next_packet() {
Ok(packet) => packet,
Err(err) => {
if let SymError::IoError(io_err) = &err {
if io_err.kind() == std::io::ErrorKind::UnexpectedEof {
return InternalAudioSamples::new(samples, frequency);
}
}
return Err(error::next_packet(err));
}
};
// Consume any new metadata that has been read since the last packet.
format.metadata().skip_to_latest();
// If the packet does not belong to the selected track, skip over it.
if packet.track_id() != track_id {
continue;
}
// Decode the packet into audio samples.
let packet = decoder.decode(&packet).map_err(error::decode)?;
if read_buffer.is_none() {
let duration = packet.capacity() as u64;
let specs = packet.spec();
channel_count = specs.channels.count();
frequency = specs.rate;
read_buffer = Some(SampleBuffer::<f32>::new(duration, packet.spec().clone()));
for _ in 0..channel_count {
samples.push(Vec::new());
}
}
if let Some(read_buffer) = &mut read_buffer {
read_buffer.copy_planar_ref(packet);
let cur_samples = read_buffer.samples();
let mut cur_samples = cur_samples.chunks(cur_samples.len()/channel_count);
for dst_sample in &mut samples {
dst_sample.extend(cur_samples.next().ok_or_else(|| Error::from_str("Not enough channels in input as expected"))?);
}
}
}
}
fn resample(input: InternalAudioSamples, target_frequency: u32) -> Result<InternalAudioSamples, Error> {
const HIGH_QUALITY_CHUNKS:usize = (1024*10)*100;
fn process_partial(input_option: Option<&[&[f32]]>, resampler: &mut FftFixedInOut<f32>, planar_output: &mut Vec<Vec<f32>>) -> Result<(), Error> {
let new_samples = resampler.process_partial(input_option, None).map_err(error::resample)?;
for (channel, channel_samples) in new_samples.into_iter().enumerate() {
planar_output[channel].extend(channel_samples.iter());
}
Ok(())
}
let chunk_size = HIGH_QUALITY_CHUNKS;
let mut planar_input = input.planar_slices();
let mut resampler = FftFixedInOut::<f32>::new(input.frequency as usize, target_frequency as usize, chunk_size, input.channels()).map_err(error::resampler_construction)?;
let delay = resampler.output_delay();
let mut sample_len = input.sample_len();
let new_sample_len = (sample_len as f64*(target_frequency as f64/input.frequency as f64)) as usize;
let mut planar_output = {
let mut planar_output = Vec::new();
for _ in 0..planar_input.len() {
planar_output.push(Vec::<f32>::new());
}
planar_output
};
loop {
let next_input_frames = resampler.input_frames_next();
if next_input_frames > sample_len {
if sample_len > 0 {
// Still frames left
process_partial(Some(&planar_input), &mut resampler, &mut planar_output)?;
}
break;
}
let new_samples = resampler.process(&planar_input, None).map_err(error::resample)?;
for (channel, slice) in planar_input.iter_mut().enumerate() {
*slice = &slice[next_input_frames..];
planar_output[channel].extend(new_samples[channel].iter());
}
sample_len -= next_input_frames;
}
if planar_output[0].len() < delay + new_sample_len {
// Flush
process_partial(None, &mut resampler, &mut planar_output)?;
}
for channel in &mut planar_output {
let start = delay;
let end = start + new_sample_len;
*channel = channel[start..end].into();
}
InternalAudioSamples::new(planar_output, target_frequency)
}
fn down_sample_interleave(input: InternalAudioSamples) -> Result<CDAudioSamples, Error> {
let channels = input.channels();
let audio_buffer = input.into_audio_buffer();
let mut sample_buffer = SampleBuffer::<i16>::new(audio_buffer.capacity() as u64, audio_buffer.spec().clone());
sample_buffer.copy_interleaved_typed::<f32>(&audio_buffer);
CDAudioSamples::new(sample_buffer.samples().to_vec(), channels)
}
fn load_to_ram(mut input: Input) -> Result<std::io::Cursor<Vec<u8>>, Error> {
let mut buffer = Vec::default();
input.read_to_end(&mut buffer)?;
Ok(std::io::Cursor::new(buffer))
mod error;
use rubato::{FftFixedInOut, Resampler};
use symphonia::core::{
audio::{AudioBuffer, Layout, SampleBuffer, Signal, SignalSpec},
codecs::{Decoder, DecoderOptions, CODEC_TYPE_NULL},
errors::Error as SymError,
formats::{FormatOptions, FormatReader},
io::MediaSourceStream,
meta::MetadataOptions,
probe::Hint
};
use tool_helper::{Error, Input};
#[derive(Copy, Clone, PartialEq)]
pub enum Orality {
Stereo,
Mono,
}
pub struct CDAudioSamples {
samples: Vec::<i16>,
orality: Orality,
}
impl CDAudioSamples {
pub fn new(samples: Vec<i16>, channels: usize) -> Result<CDAudioSamples, Error> {
let orality = match channels {
0 => return Err(Error::from_str("Input file has no audio channels")),
1 => Orality::Mono,
2 => Orality::Stereo,
_ => return Err(Error::from_str("Only Mono and Stereo input are supported")),
};
Ok(CDAudioSamples{samples, orality})
}
pub fn samples(&self) -> &Vec::<i16> {
&self.samples
}
pub fn orality(&self) -> Orality {
self.orality.clone()
}
}
struct InternalAudioSamples {
planar_samples: Vec<Vec<f32>>,
frequency: u32,
}
impl InternalAudioSamples {
pub fn new(planar_samples: Vec<Vec<f32>>, frequency: u32) -> Result<InternalAudioSamples, Error> {
if planar_samples.len() < 1 || planar_samples.len() > 2{
Err(Error::from_str("Audio samples need to be either mono or stereo"))
}
else {
Ok(InternalAudioSamples{planar_samples, frequency})
}
}
pub fn into_audio_buffer(self) -> AudioBuffer<f32> {
let duration = self.sample_len() as u64;
let mut new_audio_buffer = AudioBuffer::new(duration, SignalSpec::new_with_layout(self.frequency, if self.planar_samples.len() == 1 {Layout::Mono} else {Layout::Stereo}));
new_audio_buffer.render_silence(None);
for (channel_idx, channel) in self.planar_samples.into_iter().enumerate() {
let dst_channel = new_audio_buffer.chan_mut(channel_idx);
for (sample_idx, sample) in channel.into_iter().enumerate() {
dst_channel[sample_idx] = sample;
}
}
new_audio_buffer
}
pub fn sample_len(&self) -> usize {
self.planar_samples[0].len()
}
pub fn channels(&self) -> usize {
self.planar_samples.len()
}
pub fn planar_slices(&self) -> Vec<&[f32]> {
let mut planar_slices = Vec::new();
for channel in &self.planar_samples {
planar_slices.push(channel.as_slice());
}
planar_slices
}
}
pub fn load_as_i16_audio(input: Input, target_frequency: u32) -> Result<CDAudioSamples, Error> {
let raw_audio = load_raw_audio(input)?;
let raw_audio = resample(raw_audio, target_frequency)?;
down_sample_interleave(raw_audio)
}
fn load_raw_audio(input: Input) -> Result<InternalAudioSamples, Error> {
let media_stream = MediaSourceStream::new(Box::new(load_to_ram(input)?), Default::default());
let format = symphonia::default::get_probe().format(&Hint::new(), media_stream, &FormatOptions::default(), &MetadataOptions::default()).map_err(error::probe)?.format;
let track = format.tracks().iter().find(|t| t.codec_params.codec != CODEC_TYPE_NULL).ok_or_else(error::find_track)?;
// Create a decoder for the track.
let decoder = symphonia::default::get_codecs().make(&track.codec_params, &DecoderOptions::default()).map_err(error::decoder)?;
let track_id = track.id;
decode(format, decoder, track_id)
}
fn decode(mut format: Box<dyn FormatReader>, mut decoder: Box<dyn Decoder>, track_id: u32) -> Result<InternalAudioSamples, Error> {
let mut samples = Vec::new();
let mut channel_count = 0;
let mut frequency = 0;
let mut read_buffer = None;
loop {
// Get the next packet from the media format.
let packet = match format.next_packet() {
Ok(packet) => packet,
Err(err) => {
if let SymError::IoError(io_err) = &err {
if io_err.kind() == std::io::ErrorKind::UnexpectedEof {
return InternalAudioSamples::new(samples, frequency);
}
}
return Err(error::next_packet(err));
}
};
// Consume any new metadata that has been read since the last packet.
format.metadata().skip_to_latest();
// If the packet does not belong to the selected track, skip over it.
if packet.track_id() != track_id {
continue;
}
// Decode the packet into audio samples.
let packet = decoder.decode(&packet).map_err(error::decode)?;
if read_buffer.is_none() {
let duration = packet.capacity() as u64;
let specs = packet.spec();
channel_count = specs.channels.count();
frequency = specs.rate;
read_buffer = Some(SampleBuffer::<f32>::new(duration, packet.spec().clone()));
for _ in 0..channel_count {
samples.push(Vec::new());
}
}
if let Some(read_buffer) = &mut read_buffer {
read_buffer.copy_planar_ref(packet);
let cur_samples = read_buffer.samples();
let mut cur_samples = cur_samples.chunks(cur_samples.len()/channel_count);
for dst_sample in &mut samples {
dst_sample.extend(cur_samples.next().ok_or_else(|| Error::from_str("Not enough channels in input as expected"))?);
}
}
}
}
fn resample(input: InternalAudioSamples, target_frequency: u32) -> Result<InternalAudioSamples, Error> {
const HIGH_QUALITY_CHUNKS:usize = (1024*10)*100;
fn process_partial(input_option: Option<&[&[f32]]>, resampler: &mut FftFixedInOut<f32>, planar_output: &mut Vec<Vec<f32>>) -> Result<(), Error> {
let new_samples = resampler.process_partial(input_option, None).map_err(error::resample)?;
for (channel, channel_samples) in new_samples.into_iter().enumerate() {
planar_output[channel].extend(channel_samples.iter());
}
Ok(())
}
let chunk_size = HIGH_QUALITY_CHUNKS;
let mut planar_input = input.planar_slices();
let mut resampler = FftFixedInOut::<f32>::new(input.frequency as usize, target_frequency as usize, chunk_size, input.channels()).map_err(error::resampler_construction)?;
let delay = resampler.output_delay();
let mut sample_len = input.sample_len();
let new_sample_len = (sample_len as f64*(target_frequency as f64/input.frequency as f64)) as usize;
let mut planar_output = {
let mut planar_output = Vec::new();
for _ in 0..planar_input.len() {
planar_output.push(Vec::<f32>::new());
}
planar_output
};
loop {
let next_input_frames = resampler.input_frames_next();
if next_input_frames > sample_len {
if sample_len > 0 {
// Still frames left
process_partial(Some(&planar_input), &mut resampler, &mut planar_output)?;
}
break;
}
let new_samples = resampler.process(&planar_input, None).map_err(error::resample)?;
for (channel, slice) in planar_input.iter_mut().enumerate() {
*slice = &slice[next_input_frames..];
planar_output[channel].extend(new_samples[channel].iter());
}
sample_len -= next_input_frames;
}
if planar_output[0].len() < delay + new_sample_len {
// Flush
process_partial(None, &mut resampler, &mut planar_output)?;
}
for channel in &mut planar_output {
let start = delay;
let end = start + new_sample_len;
*channel = channel[start..end].into();
}
InternalAudioSamples::new(planar_output, target_frequency)
}
fn down_sample_interleave(input: InternalAudioSamples) -> Result<CDAudioSamples, Error> {
let channels = input.channels();
let audio_buffer = input.into_audio_buffer();
let mut sample_buffer = SampleBuffer::<i16>::new(audio_buffer.capacity() as u64, audio_buffer.spec().clone());
sample_buffer.copy_interleaved_typed::<f32>(&audio_buffer);
CDAudioSamples::new(sample_buffer.samples().to_vec(), channels)
}
fn load_to_ram(mut input: Input) -> Result<std::io::Cursor<Vec<u8>>, Error> {
let mut buffer = Vec::default();
input.read_to_end(&mut buffer)?;
Ok(std::io::Cursor::new(buffer))
}

View File

@@ -1,20 +1,20 @@
mod xapcm;
use super::Arguments;
use super::raw_audio::CDAudioSamples;
use cdtypes::types::sector::{Mode2Form2, SECTOR_SIZE};
use std::io::Write;
use tool_helper::Error;
pub const HIGH_FREQUENCY:u32 = 37_800;
pub const LOW_FREQUENCY:u32 = 18_900;
pub fn encode(input: CDAudioSamples, output: &mut dyn Write, arguments: &Arguments) -> Result<(), Error> {
let mut encoder = xapcm::Encoder::new(&input, arguments.frequency, arguments.sample_depth);
while let Some(xa_sector) = encoder.encode_next_xa_sector()? {
let xa_sector = unsafe {std::mem::transmute::<Mode2Form2, [u8; SECTOR_SIZE]>(xa_sector)};
output.write(&xa_sector)?;
}
Ok(())
mod xapcm;
use super::Arguments;
use super::raw_audio::CDAudioSamples;
use cdtypes::types::sector::{Mode2Form2, SECTOR_SIZE};
use std::io::Write;
use tool_helper::Error;
pub const HIGH_FREQUENCY:u32 = 37_800;
pub const LOW_FREQUENCY:u32 = 18_900;
pub fn encode(input: CDAudioSamples, output: &mut dyn Write, arguments: &Arguments) -> Result<(), Error> {
let mut encoder = xapcm::Encoder::new(&input, arguments.frequency, arguments.sample_depth);
while let Some(xa_sector) = encoder.encode_next_xa_sector()? {
let xa_sector = unsafe {std::mem::transmute::<Mode2Form2, [u8; SECTOR_SIZE]>(xa_sector)};
output.write(&xa_sector)?;
}
Ok(())
}

View File

@@ -1,313 +1,313 @@
use crate::audio::xa::{raw_audio::{CDAudioSamples, Orality}, Frequency, SampleDepth};
use cdtypes::types::sector::{Mode2Form2, XAADPCMBitsPerSample, XAADPCMSampleRate, XAADPCMSound};
use tool_helper::Error;
pub struct Encoder<'a> {
left: ChannelState,
right: ChannelState,
source: &'a[i16],
frequency: Frequency,
sample_depth: SampleDepth,
orality: Orality,
samples_per_block: i32,
sample_limit: i32
}
impl<'a> Encoder<'a> {
const BLOCKS_PER_SECTOR:usize = 18;
const XA_ADPCM_FILTER_COUNT: i32 = 4;
const FILTER_K1: [i16; 5] = [0, 60, 115, 98, 122];
const FILTER_K2: [i16; 5] = [0, 0, -52, -55, -60];
pub fn new(cd_sample: &CDAudioSamples, frequency: Frequency, sample_depth: SampleDepth) -> Encoder {
let orality = cd_sample.orality();
let (samples_per_block, sample_limit) = Self::samples_per_block_and_limit(&cd_sample.samples(), sample_depth, orality);
Encoder{left: ChannelState::default(), right: ChannelState::default(), source: &cd_sample.samples(), frequency, sample_depth, orality, samples_per_block, sample_limit}
}
pub fn encode_next_xa_sector(&mut self) -> Result<Option<Mode2Form2>, Error> {
if self.source.is_empty() {
return Ok(None);
}
let mut sector = self.create_new_sector();
let mut dst = &mut sector.data[0..];
for _ in 0..Self::BLOCKS_PER_SECTOR {
if self.source.len() < self.samples_per_block as usize {
self.source = &self.source[self.source.len()..];
break;
}
self.encode_xa(&self.source[0..], self.sample_limit, dst)?;
self.sample_limit -= self.samples_per_block;
self.source = &self.source[self.samples_per_block as usize..];
dst = &mut dst[0x80..];
}
sector.finalize();
Ok(Some(sector))
}
fn create_new_sector(&self) -> Mode2Form2 {
let mut sector = Mode2Form2::new();
let sub_mode = &mut sector.sub_header.sub_mode;
let coding_info = &mut sector.sub_header.coding_info;
sub_mode.set_real_time();
coding_info.set_sound_type(match self.orality {
Orality::Mono => XAADPCMSound::Mono,
Orality::Stereo => XAADPCMSound::Stereo
});
coding_info.set_sample_rate(match self.frequency {
Frequency::Low => XAADPCMSampleRate::Freq18900Hz,
Frequency::High => XAADPCMSampleRate::Freq37800Hz,
});
coding_info.set_bits_per_sample(match self.sample_depth {
SampleDepth::Normal => XAADPCMBitsPerSample::Normal,
SampleDepth::High => XAADPCMBitsPerSample::High,
});
sector
}
fn encode_xa(&mut self, samples: &[i16], sample_limit: i32, data: &mut [u8]) -> Result<(), Error> {
const SHIFT_RANGE_4BPS: i32 = 12;
const SHIFT_RANGE_8BPS: i32 = 8;
let channels = [&mut self.left, &mut self.right];
match self.sample_depth {
SampleDepth::Normal => {
let (modulo, offset) = if self.orality == Orality::Stereo {(2, &STEREO_4BIT)} else {(1, &MONO_4BIT)};
let (first_offset, second_offset) = offset;
for (offset_idx, offset_set) in [first_offset, second_offset].iter().enumerate() {
for (idx, offset) in offset_set.iter().enumerate() {
let byte = Self::encode(channels[idx%modulo], &samples[offset.sample..], sample_limit + offset.sample_limit, offset.pitch, &mut data[offset.data..], offset.data_shift, offset.data_pitch, Self::XA_ADPCM_FILTER_COUNT, SHIFT_RANGE_4BPS)?;
data[idx + (offset_idx*8)] = byte;
data[idx + 4 + (offset_idx*8)] = byte;
}
}
},
SampleDepth::High => {
let (modulo, offset_set) = if self.orality == Orality::Stereo {(2, &STEREO_8BIT)} else {(1, &MONO_8BIT)};
for (idx, offset) in offset_set.iter().enumerate() {
let byte = Self::encode(channels[idx%modulo], &samples[offset.sample..], sample_limit + offset.sample_limit, offset.pitch, &mut data[offset.data..], offset.data_shift, offset.data_pitch, Self::XA_ADPCM_FILTER_COUNT, SHIFT_RANGE_8BPS)?;
data[idx] = byte;
data[idx + 4] = byte;
}
}
}
Ok(())
}
fn encode(channel_state: &mut ChannelState, samples: &[i16], sample_limit: i32, pitch: i32, data: &mut [u8], data_shift: i32, data_pitch: i32, filter_count: i32, shift_range: i32) -> Result<u8, Error> {
let mut best_mse = 1i64 << 50i64;
let mut best_filer = 0;
let mut best_sample_shift = 0;
for filter in 0..filter_count {
let true_min_shift = Self::find_min_shift(channel_state, samples, sample_limit, pitch, filter, shift_range)?;
// Testing has shown that the optimal shift can be off the true minimum shift
// by 1 in *either* direction.
// This is NOT the case when dither is used.
let min_shift = if true_min_shift - 1 < 0 {0} else {true_min_shift - 1};
let max_shift = if true_min_shift + 1 > shift_range {shift_range} else {true_min_shift + 1};
for sample_shift in min_shift..=max_shift {
let mut proposed = channel_state.clone();
Self::attempt_encode(&mut proposed, samples, sample_limit, pitch, data, data_shift, data_pitch, filter, sample_shift, shift_range)?;
if best_mse > proposed.mse {
best_mse = proposed.mse;
best_filer = filter;
best_sample_shift = sample_shift;
}
}
}
Self::attempt_encode(channel_state, samples, sample_limit, pitch, data, data_shift, data_pitch, best_filer, best_sample_shift, shift_range)
}
fn attempt_encode(out_channel_state: &mut ChannelState, samples: &[i16], sample_limit: i32, pitch: i32, data: &mut [u8], data_shift: i32, data_pitch: i32, filter: i32, sample_shift: i32, shift_range: i32) -> Result<u8, Error> {
let sample_mask = (0xFFFF >> shift_range) as u8;
let nondata_mask = (!(sample_mask << data_shift)) as u8;
let min_shift = sample_shift;
let k1 = Self::FILTER_K1[filter as usize] as i32;
let k2 = Self::FILTER_K2[filter as usize] as i32;
let hdr = ((min_shift & 0x0F) | ((filter as i32) << 4)) as u8;
out_channel_state.mse = 0;
for i in 0..28 {
let sample = (if i >= sample_limit {0} else {samples[(i*pitch) as usize] as i32}) + out_channel_state.qerr;
let previous_value = (k1*out_channel_state.prev1 + k2*out_channel_state.prev2 + (1 << 5)) >> 6;
let mut sample_enc = sample - previous_value;
sample_enc <<= min_shift;
sample_enc += 1 << (shift_range - 1);
sample_enc >>= shift_range;
if sample_enc < (std::i16::MIN as i32 >> shift_range) {sample_enc = std::i16::MIN as i32 >> shift_range}
if sample_enc > (std::i16::MAX as i32 >> shift_range) {sample_enc = std::i16::MAX as i32 >> shift_range}
sample_enc &= sample_mask as i32;
let mut sample_dec = (((sample_enc & sample_mask as i32) << shift_range) as i16) as i32;
sample_dec >>= min_shift;
sample_dec += previous_value;
if sample_dec > std::i16::MAX as i32 {sample_dec = std::i16::MAX as i32}
if sample_dec < std::i16::MIN as i32 {sample_dec = std::i16::MIN as i32}
let sample_error = sample_dec - sample;
if sample_error >= (1 << 30) || sample_error <= -(1 << 30) {
return Err(Error::from_text(format!("Sample error exceeds 30bit: {}", sample_error)));
}
data[(i*data_pitch) as usize] = ((data[(i*data_pitch) as usize] & nondata_mask) as i32 | (sample_enc << data_shift)) as u8;
out_channel_state.mse += (sample_error as u64*sample_error as u64) as i64;
out_channel_state.prev2 = out_channel_state.prev1;
out_channel_state.prev1 = sample_dec;
}
Ok(hdr)
}
fn find_min_shift(channel_state: &ChannelState, samples: &[i16], sample_limit: i32, pitch: i32, filter: i32, shift_range: i32) -> Result<i32, Error> {
/*
Assumption made:
There is value in shifting right one step further to allow the nibbles to clip.
However, given a possible shift value, there is no value in shifting one step less.
Having said that, this is not a completely accurate model of the encoder,
so maybe we will need to shift one step less.
*/
let mut prev1 = channel_state.prev1;
let mut prev2 = channel_state.prev2;
let k1 = Self::FILTER_K1[filter as usize] as i32;
let k2 = Self::FILTER_K2[filter as usize] as i32;
let mut right_shift = 0;
let mut s_min = 0;
let mut s_max = 0;
for i in 0..28 {
let raw_sample = if i >= sample_limit {0} else {samples[(i*pitch) as usize]} as i32;
let prev_values = (k1*prev1 + k2*prev2 + (1 << 5)) >> 6;
let sample = raw_sample - prev_values;
if sample < s_min {
s_min = sample;
}
if sample > s_max {
s_max = sample;
}
prev2 = prev1;
prev1 = raw_sample;
}
while right_shift < shift_range && (s_max >> right_shift) > (std::i16::MAX as i32 >> shift_range) {
right_shift += 1;
}
while right_shift < shift_range && (s_min >> right_shift) < (std::i16::MIN as i32 >> shift_range) {
right_shift += 1;
}
let min_shift = shift_range - right_shift;
if 0 <= min_shift && min_shift <= shift_range {
Ok(min_shift)
}
else {
Err(Error::from_text(format!("0 <= {} && {} <= {} was not satisfied with min_shift: {}", min_shift, min_shift, shift_range, min_shift)))
}
}
fn samples_per_block_and_limit(input: &[i16], sample_depth: SampleDepth, orality: Orality) -> (i32, i32) {
let samples_per_block = match sample_depth {
SampleDepth::Normal => 224,
SampleDepth::High => 112,
};
let sample_limit = match orality {
Orality::Stereo => input.len()*2,
Orality::Mono => input.len(),
};
(samples_per_block, sample_limit as i32)
}
}
#[derive(Clone)]
struct ChannelState {
qerr: i32, // quanitisation error
mse: i64, // mean square error
prev1: i32,
prev2: i32
}
impl std::default::Default for ChannelState {
fn default() -> Self {
ChannelState{qerr: 0, mse: 0, prev1: 0, prev2: 0}
}
}
struct EncodingOffsets {
sample: usize,
sample_limit: i32,
pitch: i32,
data: usize,
data_shift: i32,
data_pitch: i32,
}
const STEREO_4BIT: ([EncodingOffsets; 4], [EncodingOffsets; 4]) = (
[
EncodingOffsets{sample: 0, sample_limit: 0, pitch: 2, data: 0x10, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 1, sample_limit: 0, pitch: 2, data: 0x10, data_shift: 4, data_pitch: 4},
EncodingOffsets{sample: 56, sample_limit: -28, pitch: 2, data: 0x11, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 56 + 1, sample_limit: -28, pitch: 2, data: 0x11, data_shift: 4, data_pitch: 4},
],
[
EncodingOffsets{sample: 56*2, sample_limit: -28*2, pitch: 2, data: 0x12, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 56*2 + 1, sample_limit: -28*2, pitch: 2, data: 0x12, data_shift: 4, data_pitch: 4},
EncodingOffsets{sample: 56*3, sample_limit: -28*3, pitch: 2, data: 0x13, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 56*3 + 1, sample_limit: -28*3, pitch: 2, data: 0x13, data_shift: 4, data_pitch: 4}
]
);
const MONO_4BIT: ([EncodingOffsets; 4], [EncodingOffsets; 4]) = (
[
EncodingOffsets{sample: 0, sample_limit: 0, pitch: 1, data: 0x10, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 28, sample_limit: -28, pitch: 1, data: 0x10, data_shift: 4, data_pitch: 4},
EncodingOffsets{sample: 28*2, sample_limit: -28*2, pitch: 1, data: 0x11, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 28*3, sample_limit: -28*3, pitch: 1, data: 0x11, data_shift: 4, data_pitch: 4},
],
[
EncodingOffsets{sample: 28*4, sample_limit: -28*4, pitch: 1, data: 0x12, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 28*5, sample_limit: -28*5, pitch: 1, data: 0x12, data_shift: 4, data_pitch: 4},
EncodingOffsets{sample: 28*6, sample_limit: -28*6, pitch: 1, data: 0x13, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 28*7, sample_limit: -28*7, pitch: 1, data: 0x13, data_shift: 4, data_pitch: 4}
]
);
const STEREO_8BIT: [EncodingOffsets;4] = [
EncodingOffsets{sample: 0, sample_limit: 0, pitch: 2, data: 0x10, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 1, sample_limit: 0, pitch: 2, data: 0x11, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 56, sample_limit: -28, pitch: 2, data: 0x12, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 56 + 1, sample_limit: -28, pitch: 2, data: 0x13, data_shift: 0, data_pitch: 4},
];
const MONO_8BIT: [EncodingOffsets;4] = [
EncodingOffsets{sample: 0, sample_limit: 0, pitch: 1, data: 0x10, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 28, sample_limit: -28, pitch: 1, data: 0x11, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 28*2, sample_limit: -28*2, pitch: 1, data: 0x12, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 28*3, sample_limit: -28*3, pitch: 1, data: 0x13, data_shift: 0, data_pitch: 4},
use crate::audio::xa::{raw_audio::{CDAudioSamples, Orality}, Frequency, SampleDepth};
use cdtypes::types::sector::{Mode2Form2, XAADPCMBitsPerSample, XAADPCMSampleRate, XAADPCMSound};
use tool_helper::Error;
pub struct Encoder<'a> {
left: ChannelState,
right: ChannelState,
source: &'a[i16],
frequency: Frequency,
sample_depth: SampleDepth,
orality: Orality,
samples_per_block: i32,
sample_limit: i32
}
impl<'a> Encoder<'a> {
const BLOCKS_PER_SECTOR:usize = 18;
const XA_ADPCM_FILTER_COUNT: i32 = 4;
const FILTER_K1: [i16; 5] = [0, 60, 115, 98, 122];
const FILTER_K2: [i16; 5] = [0, 0, -52, -55, -60];
pub fn new(cd_sample: &CDAudioSamples, frequency: Frequency, sample_depth: SampleDepth) -> Encoder {
let orality = cd_sample.orality();
let (samples_per_block, sample_limit) = Self::samples_per_block_and_limit(&cd_sample.samples(), sample_depth, orality);
Encoder{left: ChannelState::default(), right: ChannelState::default(), source: &cd_sample.samples(), frequency, sample_depth, orality, samples_per_block, sample_limit}
}
pub fn encode_next_xa_sector(&mut self) -> Result<Option<Mode2Form2>, Error> {
if self.source.is_empty() {
return Ok(None);
}
let mut sector = self.create_new_sector();
let mut dst = &mut sector.data[0..];
for _ in 0..Self::BLOCKS_PER_SECTOR {
if self.source.len() < self.samples_per_block as usize {
self.source = &self.source[self.source.len()..];
break;
}
self.encode_xa(&self.source[0..], self.sample_limit, dst)?;
self.sample_limit -= self.samples_per_block;
self.source = &self.source[self.samples_per_block as usize..];
dst = &mut dst[0x80..];
}
sector.finalize();
Ok(Some(sector))
}
fn create_new_sector(&self) -> Mode2Form2 {
let mut sector = Mode2Form2::new();
let sub_mode = &mut sector.sub_header.sub_mode;
let coding_info = &mut sector.sub_header.coding_info;
sub_mode.set_real_time();
coding_info.set_sound_type(match self.orality {
Orality::Mono => XAADPCMSound::Mono,
Orality::Stereo => XAADPCMSound::Stereo
});
coding_info.set_sample_rate(match self.frequency {
Frequency::Low => XAADPCMSampleRate::Freq18900Hz,
Frequency::High => XAADPCMSampleRate::Freq37800Hz,
});
coding_info.set_bits_per_sample(match self.sample_depth {
SampleDepth::Normal => XAADPCMBitsPerSample::Normal,
SampleDepth::High => XAADPCMBitsPerSample::High,
});
sector
}
fn encode_xa(&mut self, samples: &[i16], sample_limit: i32, data: &mut [u8]) -> Result<(), Error> {
const SHIFT_RANGE_4BPS: i32 = 12;
const SHIFT_RANGE_8BPS: i32 = 8;
let channels = [&mut self.left, &mut self.right];
match self.sample_depth {
SampleDepth::Normal => {
let (modulo, offset) = if self.orality == Orality::Stereo {(2, &STEREO_4BIT)} else {(1, &MONO_4BIT)};
let (first_offset, second_offset) = offset;
for (offset_idx, offset_set) in [first_offset, second_offset].iter().enumerate() {
for (idx, offset) in offset_set.iter().enumerate() {
let byte = Self::encode(channels[idx%modulo], &samples[offset.sample..], sample_limit + offset.sample_limit, offset.pitch, &mut data[offset.data..], offset.data_shift, offset.data_pitch, Self::XA_ADPCM_FILTER_COUNT, SHIFT_RANGE_4BPS)?;
data[idx + (offset_idx*8)] = byte;
data[idx + 4 + (offset_idx*8)] = byte;
}
}
},
SampleDepth::High => {
let (modulo, offset_set) = if self.orality == Orality::Stereo {(2, &STEREO_8BIT)} else {(1, &MONO_8BIT)};
for (idx, offset) in offset_set.iter().enumerate() {
let byte = Self::encode(channels[idx%modulo], &samples[offset.sample..], sample_limit + offset.sample_limit, offset.pitch, &mut data[offset.data..], offset.data_shift, offset.data_pitch, Self::XA_ADPCM_FILTER_COUNT, SHIFT_RANGE_8BPS)?;
data[idx] = byte;
data[idx + 4] = byte;
}
}
}
Ok(())
}
fn encode(channel_state: &mut ChannelState, samples: &[i16], sample_limit: i32, pitch: i32, data: &mut [u8], data_shift: i32, data_pitch: i32, filter_count: i32, shift_range: i32) -> Result<u8, Error> {
let mut best_mse = 1i64 << 50i64;
let mut best_filer = 0;
let mut best_sample_shift = 0;
for filter in 0..filter_count {
let true_min_shift = Self::find_min_shift(channel_state, samples, sample_limit, pitch, filter, shift_range)?;
// Testing has shown that the optimal shift can be off the true minimum shift
// by 1 in *either* direction.
// This is NOT the case when dither is used.
let min_shift = if true_min_shift - 1 < 0 {0} else {true_min_shift - 1};
let max_shift = if true_min_shift + 1 > shift_range {shift_range} else {true_min_shift + 1};
for sample_shift in min_shift..=max_shift {
let mut proposed = channel_state.clone();
Self::attempt_encode(&mut proposed, samples, sample_limit, pitch, data, data_shift, data_pitch, filter, sample_shift, shift_range)?;
if best_mse > proposed.mse {
best_mse = proposed.mse;
best_filer = filter;
best_sample_shift = sample_shift;
}
}
}
Self::attempt_encode(channel_state, samples, sample_limit, pitch, data, data_shift, data_pitch, best_filer, best_sample_shift, shift_range)
}
fn attempt_encode(out_channel_state: &mut ChannelState, samples: &[i16], sample_limit: i32, pitch: i32, data: &mut [u8], data_shift: i32, data_pitch: i32, filter: i32, sample_shift: i32, shift_range: i32) -> Result<u8, Error> {
let sample_mask = (0xFFFF >> shift_range) as u8;
let nondata_mask = (!(sample_mask << data_shift)) as u8;
let min_shift = sample_shift;
let k1 = Self::FILTER_K1[filter as usize] as i32;
let k2 = Self::FILTER_K2[filter as usize] as i32;
let hdr = ((min_shift & 0x0F) | ((filter as i32) << 4)) as u8;
out_channel_state.mse = 0;
for i in 0..28 {
let sample = (if i >= sample_limit {0} else {samples[(i*pitch) as usize] as i32}) + out_channel_state.qerr;
let previous_value = (k1*out_channel_state.prev1 + k2*out_channel_state.prev2 + (1 << 5)) >> 6;
let mut sample_enc = sample - previous_value;
sample_enc <<= min_shift;
sample_enc += 1 << (shift_range - 1);
sample_enc >>= shift_range;
if sample_enc < (std::i16::MIN as i32 >> shift_range) {sample_enc = std::i16::MIN as i32 >> shift_range}
if sample_enc > (std::i16::MAX as i32 >> shift_range) {sample_enc = std::i16::MAX as i32 >> shift_range}
sample_enc &= sample_mask as i32;
let mut sample_dec = (((sample_enc & sample_mask as i32) << shift_range) as i16) as i32;
sample_dec >>= min_shift;
sample_dec += previous_value;
if sample_dec > std::i16::MAX as i32 {sample_dec = std::i16::MAX as i32}
if sample_dec < std::i16::MIN as i32 {sample_dec = std::i16::MIN as i32}
let sample_error = sample_dec - sample;
if sample_error >= (1 << 30) || sample_error <= -(1 << 30) {
return Err(Error::from_text(format!("Sample error exceeds 30bit: {}", sample_error)));
}
data[(i*data_pitch) as usize] = ((data[(i*data_pitch) as usize] & nondata_mask) as i32 | (sample_enc << data_shift)) as u8;
out_channel_state.mse += (sample_error as u64*sample_error as u64) as i64;
out_channel_state.prev2 = out_channel_state.prev1;
out_channel_state.prev1 = sample_dec;
}
Ok(hdr)
}
fn find_min_shift(channel_state: &ChannelState, samples: &[i16], sample_limit: i32, pitch: i32, filter: i32, shift_range: i32) -> Result<i32, Error> {
/*
Assumption made:
There is value in shifting right one step further to allow the nibbles to clip.
However, given a possible shift value, there is no value in shifting one step less.
Having said that, this is not a completely accurate model of the encoder,
so maybe we will need to shift one step less.
*/
let mut prev1 = channel_state.prev1;
let mut prev2 = channel_state.prev2;
let k1 = Self::FILTER_K1[filter as usize] as i32;
let k2 = Self::FILTER_K2[filter as usize] as i32;
let mut right_shift = 0;
let mut s_min = 0;
let mut s_max = 0;
for i in 0..28 {
let raw_sample = if i >= sample_limit {0} else {samples[(i*pitch) as usize]} as i32;
let prev_values = (k1*prev1 + k2*prev2 + (1 << 5)) >> 6;
let sample = raw_sample - prev_values;
if sample < s_min {
s_min = sample;
}
if sample > s_max {
s_max = sample;
}
prev2 = prev1;
prev1 = raw_sample;
}
while right_shift < shift_range && (s_max >> right_shift) > (std::i16::MAX as i32 >> shift_range) {
right_shift += 1;
}
while right_shift < shift_range && (s_min >> right_shift) < (std::i16::MIN as i32 >> shift_range) {
right_shift += 1;
}
let min_shift = shift_range - right_shift;
if 0 <= min_shift && min_shift <= shift_range {
Ok(min_shift)
}
else {
Err(Error::from_text(format!("0 <= {} && {} <= {} was not satisfied with min_shift: {}", min_shift, min_shift, shift_range, min_shift)))
}
}
fn samples_per_block_and_limit(input: &[i16], sample_depth: SampleDepth, orality: Orality) -> (i32, i32) {
let samples_per_block = match sample_depth {
SampleDepth::Normal => 224,
SampleDepth::High => 112,
};
let sample_limit = match orality {
Orality::Stereo => input.len()*2,
Orality::Mono => input.len(),
};
(samples_per_block, sample_limit as i32)
}
}
#[derive(Clone)]
struct ChannelState {
qerr: i32, // quanitisation error
mse: i64, // mean square error
prev1: i32,
prev2: i32
}
impl std::default::Default for ChannelState {
fn default() -> Self {
ChannelState{qerr: 0, mse: 0, prev1: 0, prev2: 0}
}
}
struct EncodingOffsets {
sample: usize,
sample_limit: i32,
pitch: i32,
data: usize,
data_shift: i32,
data_pitch: i32,
}
const STEREO_4BIT: ([EncodingOffsets; 4], [EncodingOffsets; 4]) = (
[
EncodingOffsets{sample: 0, sample_limit: 0, pitch: 2, data: 0x10, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 1, sample_limit: 0, pitch: 2, data: 0x10, data_shift: 4, data_pitch: 4},
EncodingOffsets{sample: 56, sample_limit: -28, pitch: 2, data: 0x11, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 56 + 1, sample_limit: -28, pitch: 2, data: 0x11, data_shift: 4, data_pitch: 4},
],
[
EncodingOffsets{sample: 56*2, sample_limit: -28*2, pitch: 2, data: 0x12, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 56*2 + 1, sample_limit: -28*2, pitch: 2, data: 0x12, data_shift: 4, data_pitch: 4},
EncodingOffsets{sample: 56*3, sample_limit: -28*3, pitch: 2, data: 0x13, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 56*3 + 1, sample_limit: -28*3, pitch: 2, data: 0x13, data_shift: 4, data_pitch: 4}
]
);
const MONO_4BIT: ([EncodingOffsets; 4], [EncodingOffsets; 4]) = (
[
EncodingOffsets{sample: 0, sample_limit: 0, pitch: 1, data: 0x10, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 28, sample_limit: -28, pitch: 1, data: 0x10, data_shift: 4, data_pitch: 4},
EncodingOffsets{sample: 28*2, sample_limit: -28*2, pitch: 1, data: 0x11, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 28*3, sample_limit: -28*3, pitch: 1, data: 0x11, data_shift: 4, data_pitch: 4},
],
[
EncodingOffsets{sample: 28*4, sample_limit: -28*4, pitch: 1, data: 0x12, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 28*5, sample_limit: -28*5, pitch: 1, data: 0x12, data_shift: 4, data_pitch: 4},
EncodingOffsets{sample: 28*6, sample_limit: -28*6, pitch: 1, data: 0x13, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 28*7, sample_limit: -28*7, pitch: 1, data: 0x13, data_shift: 4, data_pitch: 4}
]
);
const STEREO_8BIT: [EncodingOffsets;4] = [
EncodingOffsets{sample: 0, sample_limit: 0, pitch: 2, data: 0x10, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 1, sample_limit: 0, pitch: 2, data: 0x11, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 56, sample_limit: -28, pitch: 2, data: 0x12, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 56 + 1, sample_limit: -28, pitch: 2, data: 0x13, data_shift: 0, data_pitch: 4},
];
const MONO_8BIT: [EncodingOffsets;4] = [
EncodingOffsets{sample: 0, sample_limit: 0, pitch: 1, data: 0x10, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 28, sample_limit: -28, pitch: 1, data: 0x11, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 28*2, sample_limit: -28*2, pitch: 1, data: 0x12, data_shift: 0, data_pitch: 4},
EncodingOffsets{sample: 28*3, sample_limit: -28*3, pitch: 1, data: 0x13, data_shift: 0, data_pitch: 4},
];

View File

@@ -1,69 +1,69 @@
use clap::{Args, ValueEnum};
use std::str::FromStr;
#[derive(Args)]
pub struct Arguments {
#[clap(value_enum, value_parser)]
pub color_depth: ColorType,
#[clap(value_enum, value_parser, default_value_t=ClutAlignment::None)]
pub clut_align: ClutAlignment,
#[clap(long="semi-trans", default_value_t=false)]
pub semi_transparent: bool,
#[clap(long="color-trans", default_value_t=false)]
pub transparent_palette: bool
}
#[derive(Clone)]
pub struct Point {
pub x: u16,
pub y: u16,
}
impl Point {
pub const POINT_VALUE_NAME:&'static str = "{x,y}";
}
impl std::default::Default for Point {
fn default() -> Self {
Point{x: 0, y: 0}
}
}
impl ToString for Point {
fn to_string(&self) -> std::string::String {
"{0,0}".to_owned()
}
}
impl FromStr for Point {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let values:Vec<&str> = s.split(&['{', ',', '}']).filter_map(|value| if value.is_empty() {None} else {Some(value)}).collect();
if values.len() != 2 {
return Err(format!("Two values expected for Point but found {}", values.len()));
}
let x = values[0].parse().map_err(|e| format!("Failed converting 'x' for Point: {e}"))?;
let y = values[1].parse().map_err(|e| format!("Failed converting 'y' for Point: {e}"))?;
Ok(Point{x, y})
}
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, ValueEnum)]
pub enum ColorType{
Clut4,
Clut8,
Full16,
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, ValueEnum)]
pub enum ClutAlignment {
None,
Linear,
Block
use clap::{Args, ValueEnum};
use std::str::FromStr;
#[derive(Args)]
pub struct Arguments {
#[clap(value_enum, value_parser)]
pub color_depth: ColorType,
#[clap(value_enum, value_parser, default_value_t=ClutAlignment::None)]
pub clut_align: ClutAlignment,
#[clap(long="semi-trans", default_value_t=false)]
pub semi_transparent: bool,
#[clap(long="color-trans", default_value_t=false)]
pub transparent_palette: bool
}
#[derive(Clone)]
pub struct Point {
pub x: u16,
pub y: u16,
}
impl Point {
pub const POINT_VALUE_NAME:&'static str = "{x,y}";
}
impl std::default::Default for Point {
fn default() -> Self {
Point{x: 0, y: 0}
}
}
impl ToString for Point {
fn to_string(&self) -> std::string::String {
"{0,0}".to_owned()
}
}
impl FromStr for Point {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let values:Vec<&str> = s.split(&['{', ',', '}']).filter_map(|value| if value.is_empty() {None} else {Some(value)}).collect();
if values.len() != 2 {
return Err(format!("Two values expected for Point but found {}", values.len()));
}
let x = values[0].parse().map_err(|e| format!("Failed converting 'x' for Point: {e}"))?;
let y = values[1].parse().map_err(|e| format!("Failed converting 'y' for Point: {e}"))?;
Ok(Point{x, y})
}
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, ValueEnum)]
pub enum ColorType{
Clut4,
Clut8,
Full16,
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, ValueEnum)]
pub enum ClutAlignment {
None,
Linear,
Block
}

View File

@@ -1,150 +1,150 @@
pub mod args;
pub mod color_clut;
pub mod color_full16;
pub mod reduced_tim;
pub mod tim;
pub mod types;
use args::{ColorType, ClutAlignment, Point};
use color_clut::{IndexedImage, OutputType};
use color_full16::{RgbaImage, RgbImage};
use types::{Color as PSXColor, HeaderEncoder, PSXImageConverter, Rect};
use image::{DynamicImage, io::Reader as ImageReader};
use std::io::{Cursor, Write};
use tool_helper::{Error, Input};
fn modify_palette(mut image: IndexedImage, clut_align: ClutAlignment, semi_transparent: bool, transparent_palette: bool) -> IndexedImage {
if semi_transparent {
for color in image.palette.iter_mut() {
*color = PSXColor::semi_transparent(color.get_red(), color.get_green(), color.get_blue());
}
}
if transparent_palette {
if clut_align == ClutAlignment::Block {
for color in image.palette.iter_mut().step_by(16) {
*color = PSXColor::transparent();
}
}
else {
if let Some(first_color) = image.palette.get_mut(0) {
*first_color = PSXColor::transparent();
}
}
}
image
}
fn encode<T: PSXImageConverter>(header_conv: &mut dyn HeaderEncoder, image: T, tex_pos: Point, clut_pos: Point, color_depth: ColorType, clut_align: ClutAlignment, output: &mut dyn Write) -> Result<(), Error> {
let (width, height) = {
fn return_error(clut_type: u32, div: u32, width: u16, height: u16) -> Result<(u16, u16), Error> {
return Err(Error::from_callback(|| {format!("CLUT {} images require a width divideable by {} (found width: {}/{}={}, height: {})", clut_type, div, width, div, (width as f32/div as f32), height)}));
}
let width = image.width();
let height = image.height();
match color_depth {
ColorType::Clut4 => {
if width & 3 == 0 {
Ok((width/4, height))
}
else {
return_error(4, 4, width, height)
}
},
ColorType::Clut8 => {
if width & 1 == 0 {
Ok((width/2, height))
}
else {
return_error(8, 2, width, height)
}
},
ColorType::Full16 => {
Ok((width, height))
}
}
}?;
let palette = image.get_palette();
let (pal_width, pal_height) = {
if let Some(palette) = &palette {
let pal_length_adjusted = {
let pal_length = palette.len();
if pal_length <= 16 {
16u16
}
else {
256u16
}
};
match clut_align {
ClutAlignment::None |
ClutAlignment::Linear => (pal_length_adjusted, 1u16),
ClutAlignment::Block => (16u16, pal_length_adjusted/16u16),
}
}
else {
(0u16, 0u16)
}
};
header_conv.encode_settings(color_depth, Rect::new(tex_pos.x, tex_pos.y, width, height), Rect::new(clut_pos.x, clut_pos.y, pal_width, pal_height))?;
header_conv.write_header(output)?;
header_conv.write_clut_header(output)?;
if let Some(palette) = palette {
let mut color_count = pal_width*pal_height;
for color in palette {
tool_helper::raw::write_raw(output, color)?;
color_count -= 1;
}
while color_count > 0 {
tool_helper::raw::write_raw(output, &PSXColor::black())?;
color_count -= 1;
}
}
header_conv.write_pixel_header(output)?;
for color in image {
tool_helper::raw::write_raw(output, &color)?;
}
Ok(())
}
fn convert_full16(header_conv: &mut dyn HeaderEncoder, input: Input, output: &mut dyn Write, tex_pos: Point) -> Result<(), Error> {
match ImageReader::new(Cursor::new(tool_helper::input_to_vec(input)?)).with_guessed_format()?.decode() {
Ok(image) => {
match image {
DynamicImage::ImageRgb8(image) => encode(header_conv, RgbImage::new(image), tex_pos, Point::default(), ColorType::Full16, ClutAlignment::None, output),
DynamicImage::ImageRgba8(image) => encode(header_conv, RgbaImage::new(image), tex_pos, Point::default(), ColorType::Full16, ClutAlignment::None, output),
_ => Err(Error::from_str("Only RGB and RGBA images are supported for 16bit encoding"))
}
},
Err(error) => Err(Error::from_error(error))
}
}
fn convert_palette_based(header_conv: &mut dyn HeaderEncoder, input: Input, output: &mut dyn Write, tex_pos: Point, clut_pos: Point, color_type: ColorType, clut_align: ClutAlignment, semi_transparent: bool, transparent_palette: bool) -> Result<(), Error> {
match png::Decoder::new(input).read_info() {
Ok(reader) => {
let output_type = {
match color_type {
ColorType::Clut4 => OutputType::FourBit,
ColorType::Clut8 => OutputType::EightBit,
_ => return Err(Error::from_str("ColorType not supported"))
}
};
encode(header_conv, modify_palette(IndexedImage::new(reader, output_type)?, clut_align, semi_transparent, transparent_palette), tex_pos, clut_pos, color_type, clut_align, output)
},
Err(error) => Err(Error::from_error(error))
}
pub mod args;
pub mod color_clut;
pub mod color_full16;
pub mod reduced_tim;
pub mod tim;
pub mod types;
use args::{ColorType, ClutAlignment, Point};
use color_clut::{IndexedImage, OutputType};
use color_full16::{RgbaImage, RgbImage};
use types::{Color as PSXColor, HeaderEncoder, PSXImageConverter, Rect};
use image::{DynamicImage, io::Reader as ImageReader};
use std::io::{Cursor, Write};
use tool_helper::{Error, Input};
fn modify_palette(mut image: IndexedImage, clut_align: ClutAlignment, semi_transparent: bool, transparent_palette: bool) -> IndexedImage {
if semi_transparent {
for color in image.palette.iter_mut() {
*color = PSXColor::semi_transparent(color.get_red(), color.get_green(), color.get_blue());
}
}
if transparent_palette {
if clut_align == ClutAlignment::Block {
for color in image.palette.iter_mut().step_by(16) {
*color = PSXColor::transparent();
}
}
else {
if let Some(first_color) = image.palette.get_mut(0) {
*first_color = PSXColor::transparent();
}
}
}
image
}
fn encode<T: PSXImageConverter>(header_conv: &mut dyn HeaderEncoder, image: T, tex_pos: Point, clut_pos: Point, color_depth: ColorType, clut_align: ClutAlignment, output: &mut dyn Write) -> Result<(), Error> {
let (width, height) = {
fn return_error(clut_type: u32, div: u32, width: u16, height: u16) -> Result<(u16, u16), Error> {
return Err(Error::from_callback(|| {format!("CLUT {} images require a width divideable by {} (found width: {}/{}={}, height: {})", clut_type, div, width, div, (width as f32/div as f32), height)}));
}
let width = image.width();
let height = image.height();
match color_depth {
ColorType::Clut4 => {
if width & 3 == 0 {
Ok((width/4, height))
}
else {
return_error(4, 4, width, height)
}
},
ColorType::Clut8 => {
if width & 1 == 0 {
Ok((width/2, height))
}
else {
return_error(8, 2, width, height)
}
},
ColorType::Full16 => {
Ok((width, height))
}
}
}?;
let palette = image.get_palette();
let (pal_width, pal_height) = {
if let Some(palette) = &palette {
let pal_length_adjusted = {
let pal_length = palette.len();
if pal_length <= 16 {
16u16
}
else {
256u16
}
};
match clut_align {
ClutAlignment::None |
ClutAlignment::Linear => (pal_length_adjusted, 1u16),
ClutAlignment::Block => (16u16, pal_length_adjusted/16u16),
}
}
else {
(0u16, 0u16)
}
};
header_conv.encode_settings(color_depth, Rect::new(tex_pos.x, tex_pos.y, width, height), Rect::new(clut_pos.x, clut_pos.y, pal_width, pal_height))?;
header_conv.write_header(output)?;
header_conv.write_clut_header(output)?;
if let Some(palette) = palette {
let mut color_count = pal_width*pal_height;
for color in palette {
tool_helper::raw::write_raw(output, color)?;
color_count -= 1;
}
while color_count > 0 {
tool_helper::raw::write_raw(output, &PSXColor::black())?;
color_count -= 1;
}
}
header_conv.write_pixel_header(output)?;
for color in image {
tool_helper::raw::write_raw(output, &color)?;
}
Ok(())
}
fn convert_full16(header_conv: &mut dyn HeaderEncoder, input: Input, output: &mut dyn Write, tex_pos: Point) -> Result<(), Error> {
match ImageReader::new(Cursor::new(tool_helper::input_to_vec(input)?)).with_guessed_format()?.decode() {
Ok(image) => {
match image {
DynamicImage::ImageRgb8(image) => encode(header_conv, RgbImage::new(image), tex_pos, Point::default(), ColorType::Full16, ClutAlignment::None, output),
DynamicImage::ImageRgba8(image) => encode(header_conv, RgbaImage::new(image), tex_pos, Point::default(), ColorType::Full16, ClutAlignment::None, output),
_ => Err(Error::from_str("Only RGB and RGBA images are supported for 16bit encoding"))
}
},
Err(error) => Err(Error::from_error(error))
}
}
fn convert_palette_based(header_conv: &mut dyn HeaderEncoder, input: Input, output: &mut dyn Write, tex_pos: Point, clut_pos: Point, color_type: ColorType, clut_align: ClutAlignment, semi_transparent: bool, transparent_palette: bool) -> Result<(), Error> {
match png::Decoder::new(input).read_info() {
Ok(reader) => {
let output_type = {
match color_type {
ColorType::Clut4 => OutputType::FourBit,
ColorType::Clut8 => OutputType::EightBit,
_ => return Err(Error::from_str("ColorType not supported"))
}
};
encode(header_conv, modify_palette(IndexedImage::new(reader, output_type)?, clut_align, semi_transparent, transparent_palette), tex_pos, clut_pos, color_type, clut_align, output)
},
Err(error) => Err(Error::from_error(error))
}
}

View File

@@ -1,16 +1,16 @@
pub mod types;
use super::args::{ColorType, Point};
use std::io::Write;
use types::Header;
use tool_helper::{Error, Input};
pub type Arguments = super::args::Arguments;
pub fn convert(args: Arguments, input: Input, output: &mut dyn Write) -> Result<(), Error> {
let mut header_conv = Header::default();
match args.color_depth {
ColorType::Full16 => super::convert_full16(&mut header_conv, input, output, Point::default()),
_ => super::convert_palette_based(&mut header_conv, input, output, Point::default(), Point::default(), args.color_depth, args.clut_align, args.semi_transparent, args.transparent_palette),
}
pub mod types;
use super::args::{ColorType, Point};
use std::io::Write;
use types::Header;
use tool_helper::{Error, Input};
pub type Arguments = super::args::Arguments;
pub fn convert(args: Arguments, input: Input, output: &mut dyn Write) -> Result<(), Error> {
let mut header_conv = Header::default();
match args.color_depth {
ColorType::Full16 => super::convert_full16(&mut header_conv, input, output, Point::default()),
_ => super::convert_palette_based(&mut header_conv, input, output, Point::default(), Point::default(), args.color_depth, args.clut_align, args.semi_transparent, args.transparent_palette),
}
}

View File

@@ -1,63 +1,63 @@
use super::super::{args::ColorType, types::{HeaderEncoder, set_member_value, Rect}};
use std::io::Write;
use tool_helper::{bits::BitRange, raw::RawConversion, Error};
#[repr(packed(1))]
pub struct Header {
value: u32
}
impl Header {
const TEX_WIDTH_BIT_RANGE: BitRange = BitRange::from_to(0, 8);
const TEX_HEIGHT_BIT_RANGE: BitRange = BitRange::from_to(9, 16);
const CLUT_WIDTH_BIT_RANGE: BitRange = BitRange::from_to(17, 22);
const CLUT_HEIGHT_BIT_RANGE: BitRange = BitRange::from_to(23, 31);
}
impl Default for Header {
fn default() -> Self {
Header{value: 0}
}
}
impl HeaderEncoder for Header {
fn encode_settings(&mut self, _color_type: ColorType, tex_rect: Rect, clut_rect: Rect) -> Result<(), Error> {
let clut_width = clut_rect.width;
let clut_height = clut_rect.height;
let tex_width = tex_rect.width;
let tex_height = tex_rect.height;
if tex_width & 1 == 1 || tex_height & 1 == 1 {
Err(Error::from_text(format!("Image size (width: {}, height: {}) needs to be even", tex_width, tex_height)))
}
else {
let value = set_member_value!(set_member_value!(set_member_value!(set_member_value!(0,
tex_width, 1, u32),
tex_height, 1, u32),
clut_width, 4, u32),
clut_height, 0, u32);
self.value = value;
Ok(())
}
}
fn write_header(&self, output: &mut dyn Write) -> Result<usize, Error> {
Ok(output.write(&self.convert_to_raw())?)
}
fn write_clut_header(&self, _output: &mut dyn Write) -> Result<usize, Error> {
Ok(0)
}
fn write_pixel_header(&self, _output: &mut dyn Write) -> Result<usize, Error> {
Ok(0)
}
}
impl RawConversion<4> for Header {
fn convert_to_raw(&self) -> [u8; 4] {
self.value.to_le_bytes()
}
use super::super::{args::ColorType, types::{HeaderEncoder, set_member_value, Rect}};
use std::io::Write;
use tool_helper::{bits::BitRange, raw::RawConversion, Error};
#[repr(packed(1))]
pub struct Header {
value: u32
}
impl Header {
const TEX_WIDTH_BIT_RANGE: BitRange = BitRange::from_to(0, 8);
const TEX_HEIGHT_BIT_RANGE: BitRange = BitRange::from_to(9, 16);
const CLUT_WIDTH_BIT_RANGE: BitRange = BitRange::from_to(17, 22);
const CLUT_HEIGHT_BIT_RANGE: BitRange = BitRange::from_to(23, 31);
}
impl Default for Header {
fn default() -> Self {
Header{value: 0}
}
}
impl HeaderEncoder for Header {
fn encode_settings(&mut self, _color_type: ColorType, tex_rect: Rect, clut_rect: Rect) -> Result<(), Error> {
let clut_width = clut_rect.width;
let clut_height = clut_rect.height;
let tex_width = tex_rect.width;
let tex_height = tex_rect.height;
if tex_width & 1 == 1 || tex_height & 1 == 1 {
Err(Error::from_text(format!("Image size (width: {}, height: {}) needs to be even", tex_width, tex_height)))
}
else {
let value = set_member_value!(set_member_value!(set_member_value!(set_member_value!(0,
tex_width, 1, u32),
tex_height, 1, u32),
clut_width, 4, u32),
clut_height, 0, u32);
self.value = value;
Ok(())
}
}
fn write_header(&self, output: &mut dyn Write) -> Result<usize, Error> {
Ok(output.write(&self.convert_to_raw())?)
}
fn write_clut_header(&self, _output: &mut dyn Write) -> Result<usize, Error> {
Ok(0)
}
fn write_pixel_header(&self, _output: &mut dyn Write) -> Result<usize, Error> {
Ok(0)
}
}
impl RawConversion<4> for Header {
fn convert_to_raw(&self) -> [u8; 4] {
self.value.to_le_bytes()
}
}

View File

@@ -1,29 +1,29 @@
pub mod types;
use super::args::{ColorType, Point};
use clap::Args;
use std::io::Write;
use types::Header;
use tool_helper::{Error, Input};
#[derive(Args)]
pub struct Arguments {
#[clap(flatten)]
global: super::args::Arguments,
#[clap(long, value_parser, default_value_t, value_name = Point::POINT_VALUE_NAME)]
clut_pos: Point,
#[clap(long, value_parser, default_value_t, value_name = Point::POINT_VALUE_NAME)]
tex_pos: Point,
}
pub fn convert(args: Arguments, input: Input, output: &mut dyn Write) -> Result<(), Error> {
let global_args = args.global;
let mut header_conv = Header::default();
match global_args.color_depth {
ColorType::Full16 => super::convert_full16(&mut header_conv, input, output, args.tex_pos),
_ => super::convert_palette_based(&mut header_conv, input, output, args.tex_pos, args.clut_pos, global_args.color_depth, global_args.clut_align, global_args.semi_transparent, global_args.transparent_palette),
}
pub mod types;
use super::args::{ColorType, Point};
use clap::Args;
use std::io::Write;
use types::Header;
use tool_helper::{Error, Input};
#[derive(Args)]
pub struct Arguments {
#[clap(flatten)]
global: super::args::Arguments,
#[clap(long, value_parser, default_value_t, value_name = Point::POINT_VALUE_NAME)]
clut_pos: Point,
#[clap(long, value_parser, default_value_t, value_name = Point::POINT_VALUE_NAME)]
tex_pos: Point,
}
pub fn convert(args: Arguments, input: Input, output: &mut dyn Write) -> Result<(), Error> {
let global_args = args.global;
let mut header_conv = Header::default();
match global_args.color_depth {
ColorType::Full16 => super::convert_full16(&mut header_conv, input, output, args.tex_pos),
_ => super::convert_palette_based(&mut header_conv, input, output, args.tex_pos, args.clut_pos, global_args.color_depth, global_args.clut_align, global_args.semi_transparent, global_args.transparent_palette),
}
}

View File

@@ -1,100 +1,100 @@
use super::super::{args::ColorType, types::{HeaderEncoder, Rect}};
use std::io::Write;
use tool_helper::{bits::{Bit, BitRange}, raw::RawConversion, Error};
pub struct Header {
flag: u32,
clut_block: DataBlock,
pixel_block: DataBlock,
}
impl Header {
const ID_VALUE: u32 = BitRange::from_to(0, 7).as_value(0x10) as u32;
const ID_VERSION_VALUE:u32 = BitRange::from_to(8, 15).as_value(0x0) as u32;
const FLAG_PMODE_BIT_RANGE: BitRange = BitRange::from_to(0, 2);
const FLAG_CF_BIT: Bit = Bit::at(3);
const ID:u32 = Self::ID_VALUE | Self::ID_VERSION_VALUE;
}
impl Default for Header {
fn default() -> Self {
Header{flag: 0, clut_block: DataBlock::default(), pixel_block: DataBlock::default()}
}
}
impl HeaderEncoder for Header {
fn encode_settings(&mut self, color_type: ColorType, tex_rect: Rect, clut_rect: Rect) -> Result<(), Error> {
self.flag = match color_type {
ColorType::Clut4 => (Self::FLAG_PMODE_BIT_RANGE.as_value(0x0) | Self::FLAG_CF_BIT.as_value(true)) as u32,
ColorType::Clut8 => (Self::FLAG_PMODE_BIT_RANGE.as_value(0x1) | Self::FLAG_CF_BIT.as_value(true)) as u32,
ColorType::Full16 => (Self::FLAG_PMODE_BIT_RANGE.as_value(0x2) | Self::FLAG_CF_BIT.as_value(false)) as u32,
};
self.clut_block = DataBlock::new(clut_rect);
self.pixel_block = DataBlock::new(tex_rect);
Ok(())
}
fn write_header(&self, output: &mut dyn Write) -> Result<usize, Error> {
let bytes = output.write(&Header::ID.to_le_bytes())?;
Ok(bytes + output.write(&self.flag.to_le_bytes())?)
}
fn write_clut_header(&self, output: &mut dyn Write) -> Result<usize, Error> {
if self.clut_block.w > 0 {
Ok(output.write(&self.clut_block.convert_to_raw())?)
}
else {
Ok(0)
}
}
fn write_pixel_header(&self, output: &mut dyn Write) -> Result<usize, Error> {
Ok(output.write(&self.pixel_block.convert_to_raw())?)
}
}
pub struct DataBlock {
bytes: u32,
x: u16,
y: u16,
w: u16,
h: u16,
}
impl DataBlock {
const RAW_HEADER_SIZE: usize = (4*std::mem::size_of::<u16>()) + std::mem::size_of::<u32>();
pub fn new(rect: Rect) -> DataBlock {
let x = rect.x;
let y = rect.y;
let w = rect.width;
let h = rect.height;
let bytes = ((w as usize*h as usize*std::mem::size_of::<u16>()) + Self::RAW_HEADER_SIZE) as u32;
DataBlock{bytes, x, y, w, h}
}
}
impl std::default::Default for DataBlock {
fn default() -> Self {
DataBlock{bytes: 0, x: 0, y: 0, w: 0, h: 0}
}
}
impl RawConversion<{Self::RAW_HEADER_SIZE}> for DataBlock {
fn convert_to_raw(&self) -> [u8; Self::RAW_HEADER_SIZE] {
let mut raw = [0u8; Self::RAW_HEADER_SIZE];
raw[ 0..4].copy_from_slice(&self.bytes.to_le_bytes());
raw[ 4..6].copy_from_slice(&self.x.to_le_bytes());
raw[ 6..8].copy_from_slice(&self.y.to_le_bytes());
raw[ 8..10].copy_from_slice(&self.w.to_le_bytes());
raw[10..12].copy_from_slice(&self.h.to_le_bytes());
raw
}
use super::super::{args::ColorType, types::{HeaderEncoder, Rect}};
use std::io::Write;
use tool_helper::{bits::{Bit, BitRange}, raw::RawConversion, Error};
pub struct Header {
flag: u32,
clut_block: DataBlock,
pixel_block: DataBlock,
}
impl Header {
const ID_VALUE: u32 = BitRange::from_to(0, 7).as_value(0x10) as u32;
const ID_VERSION_VALUE:u32 = BitRange::from_to(8, 15).as_value(0x0) as u32;
const FLAG_PMODE_BIT_RANGE: BitRange = BitRange::from_to(0, 2);
const FLAG_CF_BIT: Bit = Bit::at(3);
const ID:u32 = Self::ID_VALUE | Self::ID_VERSION_VALUE;
}
impl Default for Header {
fn default() -> Self {
Header{flag: 0, clut_block: DataBlock::default(), pixel_block: DataBlock::default()}
}
}
impl HeaderEncoder for Header {
fn encode_settings(&mut self, color_type: ColorType, tex_rect: Rect, clut_rect: Rect) -> Result<(), Error> {
self.flag = match color_type {
ColorType::Clut4 => (Self::FLAG_PMODE_BIT_RANGE.as_value(0x0) | Self::FLAG_CF_BIT.as_value(true)) as u32,
ColorType::Clut8 => (Self::FLAG_PMODE_BIT_RANGE.as_value(0x1) | Self::FLAG_CF_BIT.as_value(true)) as u32,
ColorType::Full16 => (Self::FLAG_PMODE_BIT_RANGE.as_value(0x2) | Self::FLAG_CF_BIT.as_value(false)) as u32,
};
self.clut_block = DataBlock::new(clut_rect);
self.pixel_block = DataBlock::new(tex_rect);
Ok(())
}
fn write_header(&self, output: &mut dyn Write) -> Result<usize, Error> {
let bytes = output.write(&Header::ID.to_le_bytes())?;
Ok(bytes + output.write(&self.flag.to_le_bytes())?)
}
fn write_clut_header(&self, output: &mut dyn Write) -> Result<usize, Error> {
if self.clut_block.w > 0 {
Ok(output.write(&self.clut_block.convert_to_raw())?)
}
else {
Ok(0)
}
}
fn write_pixel_header(&self, output: &mut dyn Write) -> Result<usize, Error> {
Ok(output.write(&self.pixel_block.convert_to_raw())?)
}
}
pub struct DataBlock {
bytes: u32,
x: u16,
y: u16,
w: u16,
h: u16,
}
impl DataBlock {
const RAW_HEADER_SIZE: usize = (4*std::mem::size_of::<u16>()) + std::mem::size_of::<u32>();
pub fn new(rect: Rect) -> DataBlock {
let x = rect.x;
let y = rect.y;
let w = rect.width;
let h = rect.height;
let bytes = ((w as usize*h as usize*std::mem::size_of::<u16>()) + Self::RAW_HEADER_SIZE) as u32;
DataBlock{bytes, x, y, w, h}
}
}
impl std::default::Default for DataBlock {
fn default() -> Self {
DataBlock{bytes: 0, x: 0, y: 0, w: 0, h: 0}
}
}
impl RawConversion<{Self::RAW_HEADER_SIZE}> for DataBlock {
fn convert_to_raw(&self) -> [u8; Self::RAW_HEADER_SIZE] {
let mut raw = [0u8; Self::RAW_HEADER_SIZE];
raw[ 0..4].copy_from_slice(&self.bytes.to_le_bytes());
raw[ 4..6].copy_from_slice(&self.x.to_le_bytes());
raw[ 6..8].copy_from_slice(&self.y.to_le_bytes());
raw[ 8..10].copy_from_slice(&self.w.to_le_bytes());
raw[10..12].copy_from_slice(&self.h.to_le_bytes());
raw
}
}

View File

@@ -1,3 +1,3 @@
pub mod audio;
pub mod images;
pub mod audio;
pub mod images;
pub mod nothing;

View File

@@ -1,7 +1,7 @@
use std::io::Write;
use tool_helper::{Error, Input};
pub fn copy(input: &mut Input, output: &mut dyn Write) -> Result<(), Error> {
std::io::copy(input, output)?;
Ok(())
use std::io::Write;
use tool_helper::{Error, Input};
pub fn copy(input: &mut Input, output: &mut dyn Write) -> Result<(), Error> {
std::io::copy(input, output)?;
Ok(())
}